scholarly journals Unequivocal Differences in Predation Pressure on Large Carabid Beetles between Forestry Treatments

Diversity ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 484
Author(s):  
Jana Růžičková ◽  
Zoltán Elek

Carabid beetles (Coleoptera: Carabidae) are considered as one of the most cardinal invertebrate predatory groups in many ecosystems, including forests. Previous studies revealed that the predation pressure provided by carabids significantly regulates the ecological network of invertebrates. Nevertheless, there is no direct estimation of the predation risk on carabids, which can be an important proxy for the phenomenon called ecological trap. In our study, we aimed to explore the predation pressure on carabids using 3D-printed decoys installed in two types of forestry treatments, preparation cuts and clear cuts, and control plots in a Hungarian oak–hornbeam forest. We estimated the seasonal, diurnal and treatment-specific aspects of the predation pressure on carabids. Our results reveal a significantly higher predation risk on carabids in both forestry treatments than in the control. Moreover, it was also higher in the nighttime than daytime. Contrarily, no effects of season and microhabitat features were found. Based on these clues we assume that habitats modified by forestry practices may act as an ecological trap for carabids. Our findings contribute to a better understanding of how ecological interactions between species may change in a modified forest environment.

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 572
Author(s):  
Mads Jochumsen ◽  
Taha Al Muhammadee Janjua ◽  
Juan Carlos Arceo ◽  
Jimmy Lauber ◽  
Emilie Simoneau Buessinger ◽  
...  

Brain-computer interfaces (BCIs) have been proven to be useful for stroke rehabilitation, but there are a number of factors that impede the use of this technology in rehabilitation clinics and in home-use, the major factors including the usability and costs of the BCI system. The aims of this study were to develop a cheap 3D-printed wrist exoskeleton that can be controlled by a cheap open source BCI (OpenViBE), and to determine if training with such a setup could induce neural plasticity. Eleven healthy volunteers imagined wrist extensions, which were detected from single-trial electroencephalography (EEG), and in response to this, the wrist exoskeleton replicated the intended movement. Motor-evoked potentials (MEPs) elicited using transcranial magnetic stimulation were measured before, immediately after, and 30 min after BCI training with the exoskeleton. The BCI system had a true positive rate of 86 ± 12% with 1.20 ± 0.57 false detections per minute. Compared to the measurement before the BCI training, the MEPs increased by 35 ± 60% immediately after and 67 ± 60% 30 min after the BCI training. There was no association between the BCI performance and the induction of plasticity. In conclusion, it is possible to detect imaginary movements using an open-source BCI setup and control a cheap 3D-printed exoskeleton that when combined with the BCI can induce neural plasticity. These findings may promote the availability of BCI technology for rehabilitation clinics and home-use. However, the usability must be improved, and further tests are needed with stroke patients.


2014 ◽  
Author(s):  
Timothée E Poisot ◽  
Benjamin Baiser ◽  
Jennifer A Dunne ◽  
Sonia Kéfi ◽  
Francois Massol ◽  
...  

The study of ecological networks is severely limited by (i) the difficulty to access data, (ii) the lack of a standardized way to link meta-data with interactions, and (iii) the disparity of formats in which ecological networks themselves are represented. To overcome these limitations, we conceived a data specification for ecological networks. We implemented a database respecting this standard, and released a R package ( `rmangal`) allowing users to programmatically access, curate, and deposit data on ecological interactions. In this article, we show how these tools, in conjunctions with other frameworks for the programmatic manipulation of open ecological data, streamlines the analysis process, and improves eplicability and reproducibility of ecological networks studies.


2020 ◽  
Vol 10 (9) ◽  
pp. 3020 ◽  
Author(s):  
Ali Zolfagharian ◽  
Akif Kaynak ◽  
Mahdi Bodaghi ◽  
Abbas Z. Kouzani ◽  
Saleh Gharaie ◽  
...  

Building on the recent progress of four-dimensional (4D) printing to produce dynamic structures, this study aimed to bring this technology to the next level by introducing control-based 4D printing to develop adaptive 4D-printed systems with highly versatile multi-disciplinary applications, including medicine, in the form of assisted soft robots, smart textiles as wearable electronics and other industries such as agriculture and microfluidics. This study introduced and analysed adaptive 4D-printed systems with an advanced manufacturing approach for developing stimuli-responsive constructs that organically adapted to environmental dynamic situations and uncertainties as nature does. The adaptive 4D-printed systems incorporated synergic integration of three-dimensional (3D)-printed sensors into 4D-printing and control units, which could be assembled and programmed to transform their shapes based on the assigned tasks and environmental stimuli. This paper demonstrates the adaptivity of these systems via a combination of proprioceptive sensory feedback, modeling and controllers, as well as the challenges and future opportunities they present.


2020 ◽  
Vol 41 (3) ◽  
pp. 373-385 ◽  
Author(s):  
Barbara A. Caspers ◽  
E. Tobias Krause ◽  
Isabelle Hermanski ◽  
Christopher Wiesbrock ◽  
Friedrich-Wilhelm Kastrup ◽  
...  

Abstract Warning colouration reduces predation risk by signalling or mimicking the unpleasantness of prey and therefore increases survival. We tested in two experiments the evolutionary costs and benefits of the yellow colour pattern in fire salamanders (Salamandra salamandra), which display a yellow/black colour pattern usually associated with toxic alkaloids. Our first experiment aimed to test whether the development of colouration is condition dependent and thus related to developmental costs, i.e. influenced by resource availability during the developmental process. Therefore, we reared fire salamander larvae under different nutritional conditions and compared the relative amount of yellow they developed after metamorphosis. Fire salamander larvae reared under limited food conditions had a lower proportion of yellow following metamorphosis than control larvae reared under superior food conditions. In a second experiment we tested whether the proportion of yellow has an impact on the risk of being attacked using artificial models. We tested, in salamander-free and salamander-occupied natural habitats, whether artificial clay models with different proportions of yellow and black receive different attack rates from potential predators (birds, mammals, insects). In clay models the proportion of yellow and the site had a significant effect on predation risk. Models with larger amounts of yellow had fewer bite marks from predators such as carabid beetles and birds, but only in sympatry with salamanders. In conclusion, the early expression of conspicuous colouration seems to be condition dependent and therefore potentially costly. Furthermore, the yellow colouration of fire salamanders act as a signal that potentially reduces their risk of being attacked by predators. Thus, the yellow colouration of fire salamanders seems to represent an adaptive trait that reduces the risk of predation, which can be expressed in higher quantity by individuals of a certain condition.


Author(s):  
Duncan Carter-Davies ◽  
Junshen Chen ◽  
Fei Chen ◽  
Miao Li ◽  
Chenguang Yang

Author(s):  
Ikram Hussain Mohammed ◽  
Nicolas Gallardo ◽  
Patrick Benavidez ◽  
Mo Jamshidi ◽  
Benjamin Champion

2008 ◽  
Vol 29 (2) ◽  
pp. 278-283 ◽  
Author(s):  
Mark Jordan ◽  
Howard Snell ◽  
Jennifer Hollis ◽  
Paul Stone

Abstract Gradients in habitat structure are expected to influence the outcome of selection on traits that contribute to communicative display. Galápagos lava lizards (Microlophus albemarlensis complex) on Isla Plaza Sur in the Galápagos Islands occur across a gradient of vegetative cover. Previous work in this population has shown that traits associated with predator avoidance are magnified in habitats with low vegetative cover. This pattern suggests that predation pressure differs by habitat and thus, may act to select against the elaboration of ornamentation. We measured the size of the chin patch, an ornament known to be used in intraspecific signaling, to test this hypothesis. The area of the chin patch was dependent on both snout-vent length and residual body mass. In contrast to expectation, males had larger chin patches in the sparsely vegetated habitat suggested to have high predation risk. This result raises questions about the presumed survival cost of ornament elaboration.


2020 ◽  
Author(s):  
Reto Schmucki ◽  
David A. Bohan ◽  
Michael J.O. Pocock

AbstractWeed management is a resource-intensive practice in arable agriculture, with direct and long-term impacts on both productivity and biodiversity (e.g. plant, pollinators and farmland wildlife). In conventional systems, weed control relies on crop management and herbicide inputs, but for more sustainable production systems, use of herbicides needs to be reduced. This requires a good understanding of the processes that regulate arable weed dynamics in arable fields.We adopted a systems framework to understand and model interacting components that drive the weed dynamics in 168 arable fields. Within this framework, we built a structural equation model (SEM) to quantify the direct and indirect effects of crop rotation (i.e. crops in the previous three years and the current year) and carabid beetles (Coleoptera: Carabidae) on weed density, seed abundance and accumulation in the seedbank. We included results from a mechanistic approach to infer interactions between seed-feeding carabid beetles and seeds to estimate predation pressure in each field.Our results show that weeds in arable fields are regulated by crop type, sowing season, and activity density of carabid beetles. We found a direct effect of crop rotation, including both past and current field management practice, on weed abundance in the field and its seedbank. There was also an indirect effect of crops on weed seed accumulation in the seedbank via the effect of seed-eating carabid beetles. The efficiency of weed control by carabid beetles depended on the cumulative predation pressure, which indicates the importance of functional diversity as well as abundance.Farmers and agronomists can capitalise on the ecosystem services provided by carabid beetles by adapting agronomic practices and crop rotation to maintain a rich fauna of seed-eating carabids in fields and potentially across the agricultural landscapes. When integrated with rotational management practices, this ecosystem services can improve the efficiency of weed management and contribute to the sustainability of cropping systems.


2020 ◽  
Author(s):  
Yonghua Wu

AbstractBirds are characterized by evolutionary specializations of both locomotion (e.g., flapping flight) and digestive system (toothless, crop, and gizzard), while the potential selection pressures responsible for these evolutionary specializations remain unclear. Here we used a recently developed molecular phyloecological method to reconstruct the diets of the ancestral archosaur and of the common ancestor of living birds (CALB). Our results showed that the ancestral archosaur exhibited a predominant Darwinian selection of protein and fat digestion and absorption, whereas the CALB showed a marked enhanced selection of carbohydrate and fat digestion and absorption, suggesting a trophic shift from carnivory to herbivory (fruit, seed, and/or nut-eater) at the archosaur-to-bird transition. The evolutionary shift of the CALB to herbivory may have essentially made them become a low-level consumer and, consequently, subject to relatively high predation risk from potential predators such as gliding maniraptorans, from which birds descended. Under the relatively high predation pressure, ancestral birds with gliding capability may have then evolved not only flapping flight as a possible anti-predator strategy against gliding predatory maniraptorans but also the specialized digestive system as an evolutionary tradeoff of maximizing foraging efficiency and minimizing predation risk. Our results suggest that the powered flight and specialized digestive system of birds may have evolved as a result of their tropic shift-associated predation pressure.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Gábor Pozsgai ◽  
Ibtissem Ben Fekih ◽  
Markus V. Kohnen ◽  
Said Amrani ◽  
Sándor Bérces ◽  
...  

AbstractDescribing and conserving ecological interactions woven into ecosystems is one of the great challenges of the 21st century. Here, we present a unique dataset compiling the biotic interactions between two ecologically and economically important taxa: ground beetles (Coleoptera: Carabidae) and fungi. The resulting dataset contains the carabid-fungus associations collected from 392 scientific publications, 129 countries, mostly from the Palearctic region, published over a period of 200 years. With an updated taxonomy to match the currently accepted nomenclature, 3,378 unique associations among 5,564 records were identified between 1,776 carabid and 676 fungal taxa. Ectoparasitic Laboulbeniales were the most frequent fungal group associated with carabids, especially with Trechinae. The proportion of entomopathogens was low. Three different formats of the data have been provided along with an interactive data digest platform for analytical purposes. Our database summarizes the current knowledge on biotic interactions between insects and fungi, while offering a valuable resource to test large-scale hypotheses on those interactions.


Sign in / Sign up

Export Citation Format

Share Document