scholarly journals Homogenized Phylogeographic Structure across the Indo-Burma Ranges of a Large Monoecious Fig, Ficus altissima Blume

Diversity ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 654
Author(s):  
Jian-Feng Huang ◽  
Clive T. Darwell ◽  
Yan-Qiong Peng

As well as bountiful natural resources, the Indo-Burma biodiversity hotspot features high rates of habitat destruction and fragmentation due to increasing human activity; however, most of the Indo-Burma species are poorly studied. The exploration of plants closely associated with human activity will further assist us to understand our influence in the context of the ongoing extinction events in the Anthropocene. This study, based on widely and intensively sampled F. altissima across Indo-Burma and the adjacent south China ranges, using both the chloroplast psbA-trnH spacer and sixteen newly developed nuclear microsatellite markers (nSSRs), aims to explore its spatial genetic structure. The results indicated low chloroplast haplotype diversity and a moderate level of nuclear genetic diversity. Although limited seed flow was revealed by psbA-trnH, no discernible phylogeographic structure was shown due to the low resolution of cpDNA markers and dominance of an ancestral haplotype. From the nSSRs data set, phylogeographic structure was homogenized, most likely due to extensive pollen flow mediated by pollinating fig wasps. Additionally, human cultivation and human-mediated transplanting further confounded the analyses of population structure. No geographic barriers are evident across the large study range, with F. altissima constituting a single population, and extensive human cultivation is likely to have had beneficial consequences for protecting the genetic diversity of F. altissima.

Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 346
Author(s):  
Chaochao Hu ◽  
Sijia Yuan ◽  
Wan Sun ◽  
Wan Chen ◽  
Wei Liu ◽  
...  

Species dispersal patterns and population genetic structure can be influenced by geographical features. Qinling Mountains (QM) provide an excellent area for phylogeographic study. The phylogeography of Asian-wide wild boars revealed the colonization route. However, the impact of the QM on genetic diversity, genetic structure and population origin is still poorly understood. In this study, genetic analysis of wild boar in the QM was conducted based on the mitochondrial control region (943 bp) and twelve microsatellite loci of 82 individuals in 16 sampling locations. Overall genetic haplotype diversity was 0.86, and the nucleotide diversity was 0.0079. A total of 17 new haplotypes were detected. The level of genetic diversity of wild boars in QM was lower than in East Asia, but higher than in Europe. Phylogenetic analysis showed the weak genetic divergence in QM. Mismatch analysis, neutrality tests, and Bayesian Skyline Plot (BSP) results revealed that the estimates of effective population size were under demographic equilibrium in the past. Spatial analysis of molecular variance indicated no obvious phylogeographic structure.


2014 ◽  
Vol 62 (3) ◽  
pp. 238 ◽  
Author(s):  
Z. Y. Zhang ◽  
S. Cashins ◽  
A. Philips ◽  
C. P. Burridge

Conservation of frogs is of global concern, owing to declines resulting from habitat destruction, global climate change, and disease. Knowledge of genetic variation in frog species is therefore desirable for the identification of management units. Here we surveyed mitochondrial DNA sequence variation in the Tasmanian endemic hylid frog Litoria burrowsae, which is infected by chytrid fungus, Batrachochytrium dendrobatidis, and may be declining. Neither phylogeographic structure nor deep phylogenetic divergence was detected in the species, although its populations were highly differentiated with respect to haplotype frequencies. The low-haplotype diversity in L. burrowsae suggests a recent bottleneck in the species, and population genetic structuring may reflect isolation by distance as well as founder effects associated with range expansion. Three putative management units were identified that require verification based on nuclear DNA variation and adaptation to local environments.


2014 ◽  
Vol 62 (3) ◽  
pp. 175 ◽  
Author(s):  
Archana Gauli ◽  
Dorothy A. Steane ◽  
René E. Vaillancourt ◽  
Brad M. Potts

Genetic diversity and population structure of Tasmanian populations of Eucalyptus pauciflora were assessed using chloroplast and nuclear microsatellite markers. Maternal trees and open-pollinated progeny from 37 populations were sampled across the species’ geographic and altitudinal distribution in Tasmania. The distribution of chloroplast haplotype richness showed a clear geographic structure with suggestion of three major refugia (Storm Bay, Tamar Valley and St Pauls River Valley), two of which are consistent with previously reported glacial refugia. Chloroplast haplotype affinities provided evidence of migration of populations from the north and east towards the south and west of Tasmania. High nuclear microsatellite diversity was observed across the species’ range. Most of this variation was distributed within populations with low but significant FST, suggesting high gene flow among populations that is more pronounced in mature stands. Higher nuclear genetic diversity in newly colonised areas compared with lowland putative refugial regions, and the converse in chloroplast DNA markers, suggest limited seed dispersal into newly colonised regions combined with high pollen flow between different source populations in newly colonised areas. Our results do not support the suggestion that highland populations of E. pauciflora originate from in situ high-altitude refugia, but instead argue they originate from lowland refugia.


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1129
Author(s):  
Jennifer M. Yost ◽  
Sascha L. Wise ◽  
Natalie L. R. Love ◽  
Dorothy A. Steane ◽  
Rebecca C. Jones ◽  
...  

Eucalyptus globulus is native to southeastern Australia, including the island of Tasmania, but is one of the most widely grown hardwood forestry species in the world and is naturalized on several continents. We studied its naturalization in California, where the species has been planted for over 150 years. We sampled 70 E. globulus trees from 53 locations spanning the entire range of the species in California to quantify the genetic variation present and test whether particular genotypes or native origin affect variation in naturalization among locations. Diversity and native affinities were determined based on six nuclear microsatellite markers and sequences from a highly variable chloroplast DNA region (JLA+). The likely native origin was determined by DNA-based comparison with a range-wide native stand collection. Most of California’s E. globulus originated from eastern Tasmania. Genetic diversity in California is greatly reduced compared with that of the native Australian population, with a single chloroplast haplotype occurring in 66% of the Californian samples. Throughout California, the degree of E. globulus naturalization varies widely but was not associated with genotype or native origin of the trees, arguing that factors such as local climate and disturbance are more important than pre-introduction evolutionary history.


2017 ◽  
Vol 64 (1) ◽  
pp. 18 ◽  
Author(s):  
Arif Parmaksız ◽  
Esra Eksi

In this study, genetic diversity of Capoeta trutta (Heckel, 1843) populations from Euphrates and Tigris rivers in Turkey was evaluated based on gene sequence analysis of mitochondrial DNA cytochrome c oxidase subunit I (mtDNA COI) locus. Six polymorphic sites and seven haplotypes were detected in 47 samples collected from four populations viz., Adiyaman, Birecik, Bismil and Batman. The mean haplotype diversity (h) and nucleotide diversity (π) were calculated as h = 0,6420 and π = 0,00138 respectively. Pairwise FST statistics of different populations were found to be negative, low and were insignificant, indicating gene flow. AMOVA analysis showed Fst = 0.09865 and p = 0.00489, indicating that the populations were isolated. The results of Neutrality tests showed an increase in Adiyaman, Birecik and Bismil populations and a decline in Batman population, all values being statistically insignificant (p>0.05). Three haplotypes determined for mtDNA COI locus in the present study form important data set for genetic diversity of this species.


2007 ◽  
Vol 55 (7) ◽  
pp. 673 ◽  
Author(s):  
Kitt G. Payn ◽  
William S. Dvorak ◽  
Alexander A. Myburg

We present a study of the colonisation patterns of a tropical tree species among an island archipelago. Eucalyptus urophylla (S.T.Blake) is an economically important plantation species endemic to the volcanic slopes of seven islands in eastern Indonesia. In the present study, we investigated the geographical distribution of chloroplast DNA sequence variation in E. urophylla to gain insight into its historical seed-migration routes. DNA sequence data were obtained from 198 plants from which 20 haplotypes were identified. A moderate to high level of chloroplast genetic differentiation (GST = 0.581, NST = 0.724) and significant phylogeographic structure (NST > GST; P < 0.01) were observed, suggesting low levels of recurrent seed-mediated gene flow among the islands. The highest levels of haplotype diversity were observed on the eastern islands of Wetar and Timor. The two most westerly islands, Flores and Lomblen, were fixed for what appeared to be the ancestral haplotype. Chloroplast haplotype diversity therefore exhibited a decreasing trend from east to west in the species’ range, consistent with an east-to-west colonisation route across the seven islands. Environmental factors that may have contributed to the contemporary spatial distribution of chloroplast DNA haplotypes include island paleogeology, ocean currents, fluctuations in sea levels and possible hybridisation events.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Zhigang Wu ◽  
Xinwei Xu ◽  
Juan Zhang ◽  
Gerhard Wiegleb ◽  
Hongwei Hou

Abstract Background Due to the environmental heterogeneity along elevation gradients, alpine ecosystems are ideal study objects for investigating how ecological variables shape the genetic patterns of natural species. The highest region in the world, the Qinghai-Tibetan Plateau, is a hotspot for the studies of evolutionary processes in plants. Many large rivers spring from the plateau, providing abundant habitats for aquatic and amphibious organisms. In the present study, we examined the genetic diversity of 13 Ranunculus subrigidus populations distributed throughout the plateau in order to elucidate the relative contribution of geographic distance and environmental dissimilarity to the spatial genetic pattern. Results A relatively low level of genetic diversity within populations was found. No spatial genetic structure was suggested by the analyses of molecular variance, Bayesian clustering analysis and Mantel tests. Partial Mantel tests and multiple matrix regression analysis showed a significant influence of the environment on the genetic divergence of the species. Both climatic and water quality variables contribute to the habitat heterogeneity of R. subrigidus populations. Conclusions Our results suggest that historical processes involving long-distance dispersal and local adaptation may account for the genetic patterns of R. subrigidus and current environmental factors play an important role in the genetic differentiation and local adaptation of aquatic plants in alpine landscapes.


Diversity ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 40
Author(s):  
Evgeny Genelt-Yanovskiy ◽  
Yixuan Li ◽  
Ekaterina Stratanenko ◽  
Natalia Zhuravleva ◽  
Natalia Strelkova ◽  
...  

Ophiura sarsii is a common brittle star species across the Arctic and Sub-Arctic regions of the Atlantic and the Pacific oceans. Ophiurasarsii is among the dominant echinoderms in the Barents Sea. We studied the genetic diversity of O.sarsii by sequencing the 548 bp fragment of the mitochondrial COI gene. Ophiurasarsii demonstrated high genetic diversity in the Barents Sea. Both major Atlantic mtDNA lineages were present in the Barents Sea and were evenly distributed between the northern waters around Svalbard archipelago and the southern part near Murmansk coast of Kola Peninsula. Both regions, and other parts of the O.sarsii range, were characterized by high haplotype diversity with a significant number of private haplotypes being mostly satellites to the two dominant haplotypes, each belonging to a different mtDNA clade. Demographic analyses indicated that the demographic and spatial expansion of O.sarsii in the Barents Sea most plausibly has started in the Bølling–Allerød interstadial during the deglaciation of the western margin of the Barents Sea.


2000 ◽  
Vol 23 (3) ◽  
pp. 541-544 ◽  
Author(s):  
José Alexandre Felizola Diniz-Filho ◽  
Mariana Pires de Campos Telles

In the present study, we used both simulations and real data set analyses to show that, under stochastic processes of population differentiation, the concepts of spatial heterogeneity and spatial pattern overlap. In these processes, the proportion of variation among and within a population (measured by G ST and 1 - G ST, respectively) is correlated with the slope and intercept of a Mantel's test relating genetic and geographic distances. Beyond the conceptual interest, the inspection of the relationship between population heterogeneity and spatial pattern can be used to test departures from stochasticity in the study of population differentiation.


2016 ◽  
Vol 65 (1) ◽  
pp. 59-66 ◽  
Author(s):  
Y. C. Miao ◽  
Z. J. Zhang ◽  
J. R. Su

Abstract Taxus yunnanensis, which is an endangered tree that is considered valuable because it contains the effective natural anticancer metabolite taxol and heteropolysaccharides, has long suffered from severe habitat fragmentation. In this study, the levels of genetic diversity in two populations of 136 individuals were analyzed based on eleven polymorphic microsatellite loci. Our results suggested that these two populations were characterized by low genetic diversity (NE = 2.303/2.557; HO = 0.168/0.142; HE = 0.453/0.517), a population bottleneck, a low effective population size (Ne = 7/9), a high level of inbreeding (FIS = 0.596/0.702), and a weak, but significant spatial genetic structure (Sp = 0.001, b = −0.001*). Habitat fragmentation, seed shadow overlap and limited seed and pollen dispersal and potential selfing may have contributed to the observed gene tic structure. The results of the present study will enable development of practical conservation measures to effectively conserve the valuable genetic resources of this endangered plant.


Sign in / Sign up

Export Citation Format

Share Document