scholarly journals Systematic Design Applied in Outdoor Spatiotemporal Lighting

Designs ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 74
Author(s):  
Alexios Papacharalampopoulos ◽  
Thanos Balafoutis

Outdoor lighting design consists of many different objectives, depending on the area that is illuminated. In addition, besides functional lighting, extra messages may be superimposed to a lighting configuration. This adds to the complexity of the lighting design. Furthermore, temporal variations in lighting may be used as an additional tool of expressivity. All the above require some basic training and also some familiarity with expression tools. In this work, a framework is given for seamless communication through lighting, including both spatial and temporal lighting patterns. To this end, two different kinds of time scales are considered, leading to case studies for both seasonal lighting and communication through rapid spatiotemporal differentiations in it. The framework is two-fold, allowing for both diagrammatic and quasi-algebraic elaboration, leading to interesting visual results and providing the first step towards optimization. Different cases of outdoor lighting are considered as case studies, namely façade lighting and glass cases. These are used to illustrate the applicability and the added value of the current framework, that is, the systematization of the lighting procedure taking into account artistic interventions, which can be considered an extension of utilizing semantics.

Author(s):  
Vasily Bulatov ◽  
Wei Cai

This book presents a broad collection of models and computational methods - from atomistic to continuum - applied to crystal dislocations. Its purpose is to help students and researchers in computational materials sciences to acquire practical knowledge of relevant simulation methods. Because their behavior spans multiple length and time scales, crystal dislocations present a common ground for an in-depth discussion of a variety of computational approaches, including their relative strengths, weaknesses and inter-connections. The details of the covered methods are presented in the form of "numerical recipes" and illustrated by case studies. A suite of simulation codes and data files is made available on the book's website to help the reader "to learn-by-doing" through solving the exercise problems offered in the book.


2004 ◽  
Vol 5 (6) ◽  
pp. 1247-1258 ◽  
Author(s):  
Christopher P. Weaver

Abstract This is Part II of a two-part study of mesoscale land–atmosphere interactions in the summertime U.S. Southern Great Plains. Part I focused on case studies drawn from monthlong (July 1995–97), high-resolution Regional Atmospheric Modeling System (RAMS) simulations carried out to investigate these interactions. These case studies were chosen to highlight key features of the lower-tropospheric mesoscale circulations that frequently arise in this region and season due to mesoscale heterogeneity in the surface fluxes. In this paper, Part II, the RAMS-simulated mesoscale dynamical processes described in the Part I case studies are examined from a domain-averaged perspective to assess their importance in the overall regional hydrometeorology. The spatial statistics of key simulated mesoscale variables—for example, vertical velocity and the vertical flux of water vapor—are quantified here. Composite averages of the mesoscale and large-scale-mean variables over different meteorological or dynamical regimes are also calculated. The main finding is that, during dry periods, or similarly, during periods characterized by large-scale-mean subsidence, the characteristic signature of surface-heterogeneity-forced mesoscale circulations, including enhanced vertical motion variability and enhanced mesoscale fluxes in the lowest few kilometers of the atmosphere, consistently emerges. Furthermore, the impact of these mesoscale circulations is nonnegligible compared to the large-scale dynamics at domain-averaged (200 km × 200 km) spatial scales and weekly to monthly time scales. These findings support the hypothesis that the land– atmosphere interactions associated with mesoscale surface heterogeneity can provide pathways whereby diurnal, mesoscale atmospheric processes can scale up to have more general impacts at larger spatial scales and over longer time scales.


2021 ◽  
Author(s):  
Andrew Imrie ◽  
Maciej Kozlowski ◽  
Omar Torky ◽  
Aditya Arie Wijaya

AbstractMonitoring pipe corrosion is one of the critical aspects in the well intervention. Such analysis is used to evaluate and justify any remedial actions, to prolong the longevity of the well. Typical corrosion evaluation methods of tubulars consist of multifinger caliper tools that provide high-resolution measurements of the internal condition of the pipe. Routinely, this data is then analyzed and interpreted with respect to the manufacture's nominal specification for each tubular. However, this requires assumptions on the outer diameter of the tubular may add uncertainty, and incorrectly calculate the true metal thicknesses. This paper will highlight cases where the integration of such tool and electromagnetic (EM) thickness data adds value in discovering the true condition of both the first tubular and outer casings.These case studies demonstrate the use of a multireceiver, multitransmitter electromagnetic (EM) metal thickness tool operating at multiple simultaneous frequencies. It is used to measure the individual wall thickness across multiple strings (up to five) and operates continuously, making measurements in the frequency domain. This tool was combined with a multifinger caliper to provide a complete and efficient single-trip diagnosis of the tubing and casing integrity. The combination of multifinger caliper and EM metal thickness tool results gives both internal and external corrosion as well as metal thickness of first and outer tubular strings.The paper highlights multiple case studies including; i) successfully detecting several areas of metal loss (up to greater than 32%) on the outer string, which correlated to areas of the mobile salt formation, ii) overlapping defects in two tubulars and, iii) cases where a multifinger caliper alone doesn't provide an accurate indication of the true wall thickness. The final case highlights the advantages of integrating multiple tubular integrity tools when determining the condition of the casing wall.Metal thickness tools operating on EM principles benefit from a slim outer diameter design that allows the tools to pass through restrictions which typically would prevent ultrasonic scanning thickness tools. Additionally, EM tools are unaffected by the type of fluid in the wellbore and not affected by any non-ferrous scale buildup that may present in the inside of the tubular wall. Combinability between complementary multifinger caliper technology and EM thickness results in two independent sensors to provide a complete assessment of the well architecture.


2021 ◽  
Vol 129 ◽  
pp. 08013
Author(s):  
Leila Neimane

Research background: Nowadays, mainstream discussions on maritime spatial planning (MSP) are tightly intertwined with the discourse on governance for land-sea interactions or interface (LSI), using multi-scalar and cross-sectoral governance systems. At the same time, principles with legal rank need to be respected and applied in both MSP and LSI and their respective governance structures while putting coastal communities at the centre and taking into consideration the process of “maritimisation.” In combination, these factors contribute to augmenting the pressure of competing uses both on land and sea in the frame of the Blue Economy. As an exemplary forerunner in the field of MSP, the Baltic Sea Region (BSR) and its case studies can provide a useful insight in this respect. Purpose of the article: The aim is to identify and integrate the principles with legal rank of Effective Governance for sustainable development to be implemented through different LSI governance perspectives and in the framework of MSP and the Blue Economy, providing concise guidance as to their application through BSR case studies. Methods: Preparation of this article involves applying traditional legal research methods (analysis and synthesis) and the results of maritime spatial plans and practical examples of pilot projects. Analysis includes the following techniques: descriptive, historical, special analytical and dogmatically comparable, including an analytical perspective of transnational environmental law. Synthesis is applied through the legally constructive method. Findings & Value added: Based on conclusions and lessons learned from BSR case studies, the article offers added value by structuring and improving knowledge and providing a basis for further theoretical discussion.


2016 ◽  
Vol 50 (2) ◽  
pp. 253-265 ◽  
Author(s):  
AM Dugar

Architectural lighting design is generally believed to have visual and psychological consequences on humans, and has been investigated either as an artistic or a scientific endeavour. This paper explores the possibility that these two viewpoints are not mutually exclusive with a poetic approach. It builds upon two arguments: the first is that poetry, being an inherently compositional system like language, impacts the perceived meaning of lit environments; the second is that humans seek qualities with experiential richness when interacting with lit environments, which is very much aligned with poetry. This reasoning is supplemented by reflections on the poetic possibilities within realised projects used as simple artistic and scientific case studies to demonstrate this complex visual and psychological interplay. Opinions from academics and professionals from the field of architectural lighting design are sought on these poetic possibilities, the appropriateness of these realised projects in expressing their respective qualities, and on the role of poetics in architectural lighting design in general.


2020 ◽  
Vol 12 (18) ◽  
pp. 7804
Author(s):  
Dominika Šulyová ◽  
Gabriel Koman

The wood-processing industry currently does not sufficiently use modern technologies, unlike the automotive sector. The primary motive for writing this article was in cooperation with a Slovak wood processing company, which wanted to improve its logistics processes and increase competitiveness in the wood processing sector through the implementation of new technologies. The aim of this article was to identify the positives and limitations of the implementation of Internet of Things (IoT) technology into the wood processing industry, based on a secondary analysis of case studies and the best practice of American wood processing companies such as West Fraser Timber in Canada, and Weyerhaeuser in the USA. The selection of case studies was conditional on criteria of time relevance, size of the sawmills, and production volume in m3. These conditional criteria reflected the conditions for the introduction of similar concepts for wood-processing enterprises in Slovakia. The implementation of the IoT can reduce operating costs by up to 20%, increase added value for customers, and collect real-time data that can serve as the basis for support of management and decision-making at the operational, tactical, and strategic levels. In addition to the secondary analysis, methods of comparison of global wood processing companies, synthesis of knowledge, and summarization of positives and limitations of IoT implementation or deduction were used to reach our conclusions. The results were used as the basis for the design of a general model for the implementation of IoT technology for Slovak wood processing enterprises. This model may represent best practice for the selected locality and industry. The implications and verification of the designed model in practice will form part of other research activities, already underway in the form of a primary survey.


2015 ◽  
Vol 31 (6) ◽  
pp. 21-23

Purpose – This paper aims to review the latest management developments across the globe and pinpoint practical implications from cutting-edge research and case studies. Design/methodology/approach – This briefing is prepared by an independent writer who adds their own impartial comments and places the articles in context. Findings – Marketing interest in consumer engagement is widely evident. This is illustrated by the fact that having a substantial base of engaged consumers is now high on the agenda of many marketers. And why shouldn’t it be? After all, individuals demonstrating such high levels of commitment can secure added value for the brand in question. Engagement inspires tendencies which reach further than purchasing and other market-related activities. High levels of attachment are typical of engaged consumers who will often thus serve as brand advocates. Practical implications – The paper provides strategic insights and practical thinking that have influenced some of the world’s leading organizations. Originality/value – The briefing saves busy executives and researchers hours of reading time by selecting only the very best, most pertinent information and presenting it in a condensed and easy-to-digest format.


2020 ◽  
Vol 12 (22) ◽  
pp. 9678
Author(s):  
Aihua Long ◽  
Pei Zhang ◽  
Yang Hai ◽  
Xiaoya Deng ◽  
Junfeng Li ◽  
...  

Scientifically determining agricultural water consumption is fundamental to the optimum allocation and regulation of regional water resources. However, traditional statistical methods used for determining agricultural water consumption in China do not reflect the actual use of water resources. This paper determined the variation in the crop water footprint (CWF) to reflect the actual agricultural water consumption in Xinjiang, China, during the past 30 years, and the data from 15 crops were included. In addition, the STIRPAT (stochastic impacts by regression on population, affluence and technology) model was used to determine the factors influencing the CWF. The results showed that the CWF in Xinjiang increased by 256% during the 30-year period. Factors such as population, agricultural added value, and effective irrigated area were correlated with an increase in the CWF. This study also showed that the implementation of national and regional policies significantly accelerated the expansion of agricultural production areas and increased the amount of agricultural water used. The objectives of this paper were to identify the factors influencing the CWF, give a new perspective for further analysis of the relationship between agricultural growth and water resources utilization, and provide a reference for local policy decision-makers in Xinjiang.


2020 ◽  
Vol 12 (16) ◽  
pp. 2567
Author(s):  
Francesca Cigna ◽  
Deodato Tapete ◽  
Zhong Lu

Remote sensing data and methods are increasingly being embedded into assessments of volcanic processes and risk. This happens thanks to their capability to provide a spectrum of observation and measurement opportunities to accurately sense the dynamics, magnitude, frequency, and impacts of volcanic activity in the ultraviolet (UV), visible (VIS), infrared (IR), and microwave domains. Launched in mid-2018, the Special Issue “Remote Sensing of Volcanic Processes and Risk” of Remote Sensing gathers 19 research papers on the use of satellite, aerial, and ground-based remote sensing to detect thermal features and anomalies, investigate lava and pyroclastic flows, predict the flow path of lahars, measure gas emissions and plumes, and estimate ground deformation. The strong multi-disciplinary character of the approaches employed for volcano monitoring and the combination of a variety of sensor types, platforms, and methods that come out from the papers testify the current scientific and technology trends toward multi-data and multi-sensor monitoring solutions. The research advances presented in the published papers are achieved thanks to a wealth of data including but not limited to the following: thermal IR from satellite missions (e.g., MODIS, VIIRS, AVHRR, Landsat-8, Sentinel-2, ASTER, TET-1) and ground-based stations (e.g., FLIR cameras); digital elevation/surface models from airborne sensors (e.g., Light Detection And Ranging (LiDAR), or 3D laser scans) and satellite imagery (e.g., tri-stereo Pléiades, SPOT-6/7, PlanetScope); airborne hyperspectral surveys; geophysics (e.g., ground-penetrating radar, electromagnetic induction, magnetic survey); ground-based acoustic infrasound; ground-based scanning UV spectrometers; and ground-based and satellite Synthetic Aperture Radar (SAR) imaging (e.g., TerraSAR-X, Sentinel-1, Radarsat-2). Data processing approaches and methods include change detection, offset tracking, Interferometric SAR (InSAR), photogrammetry, hotspots and anomalies detection, neural networks, numerical modeling, inversion modeling, wavelet transforms, and image segmentation. Some authors also share codes for automated data analysis and demonstrate methods for post-processing standard products that are made available for end users, and which are expected to stimulate the research community to exploit them in other volcanological application contexts. The geographic breath is global, with case studies in Chile, Peru, Ecuador, Guatemala, Mexico, Hawai’i, Alaska, Kamchatka, Japan, Indonesia, Vanuatu, Réunion Island, Ethiopia, Canary Islands, Greece, Italy, and Iceland. The added value of the published research lies on the demonstration of the benefits that these remote sensing technologies have brought to knowledge of volcanoes that pose risk to local communities; back-analysis and critical revision of recent volcanic eruptions and unrest periods; and improvement of modeling and prediction methods. Therefore, this Special Issue provides not only a collection of forefront research in remote sensing applied to volcanology, but also a selection of case studies proving the societal impact that this scientific discipline can potentially generate on volcanic hazard and risk management.


Author(s):  
Massimo Delogu ◽  
Francesco Del Pero ◽  
Marco Pierini

A tailored model for the assessment of environmental benefits achievable by “light-weighting” in the automotive field is presented. The model is based on the Fuel Reduction Value (FRV) coefficient, which expresses the Fuel Consumption (FC) saving involved by a 100 kg mass reduction. The work is composed of two main sections: simulation and environmental modelling. Simulation modelling performs an in-depth calculation of weight-induced FC whose outcome is the FRV evaluated for a wide range of Diesel Turbocharged (DT) vehicle case studies. Environmental modelling converts fuel saving to impact reduction basing on the FRVs obtained by simulations. Results show that for the considered case studies, FRV is within the range 0.115–0.143 and 0.142–0.388 L/100 km × 100 kg, respectively, for mass reduction only and powertrain adaptation (secondary effects). The implementation of FRVs within the environmental modelling represents the added value of the research and makes the model a valuable tool for application to real case studies of automotive lightweight LCA.


Sign in / Sign up

Export Citation Format

Share Document