scholarly journals Extracellular Vesicles in Hematological Malignancies: From Biomarkers to Therapeutic Tools

Diagnostics ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1065
Author(s):  
Jihane Khalife ◽  
James F. Sanchez ◽  
Flavia Pichiorri

Small extracellular vesicles (EVs) are a heterogenous group of lipid particles released by all cell types in physiological and pathological states. In hematological malignancies, tumor-derived EVs are critical players in mediating intercellular communications through the transfer of genetic materials and proteins between neoplastic cells themselves and to several components of the bone marrow microenvironment, rendering the latter a “stronger” niche supporting cancer cell proliferation, drug resistance, and escape from immune surveillance. In this context, the molecular cargoes of tumor-derived EVs reflect the nature and status of the cells of origin, making them specific therapeutic targets. Another important characteristic of EVs in hematological malignancies is their use as a potential “liquid biopsy” because of their high abundance in biofluids and their ability to protect their molecular cargoes from nuclease and protease degradation. Liquid biopsies are non-invasive blood tests that provide a molecular profiling clinical tool as an alternative method of disease stratification, especially in cancer patients where solid biopsies have limited accessibility. They offer accurate diagnoses and identify specific biomarkers for monitoring of disease progression and response to treatment. In this review, we will focus on the role of EVs in the most prevalent hematological malignancies, particularly on their prospective use as biomarkers in the context of liquid biopsies, as well as their molecular signature that identifies them as specific therapeutic targets for inhibiting cancer progression. We will also highlight their roles in modulating the immune response by acting as both immunosuppressors and activators of anti-tumor immunity.

2021 ◽  
Vol 11 (22) ◽  
pp. 10787
Author(s):  
Giusi Alberti ◽  
Christian M. Sánchez-López ◽  
Alexia Andres ◽  
Radha Santonocito ◽  
Claudia Campanella ◽  
...  

Tumor-secreted extracellular vesicles (EVs) are the main mediators of cell-cell communication, permitting cells to exchange proteins, lipids, and metabolites in varying physiological and pathological conditions. They contain signature tumor-derived molecules that reflect the intracellular status of their cell of origin. Recent studies have shown that tumor cell-derived EVs can aid in cancer metastasis through the modulation of the tumor microenvironment, suppression of the immune system, pre-metastatic niche formation, and subsequent metastasis. EVs can easily be isolated from a variety of biological fluids, and their content makes them useful biomarkers for the diagnosis, prognosis, monitorization of cancer progression, and response to treatment. This review aims to explore the biomarkers of cancer cell-derived EVs obtained from liquid biopsies, in order to understand cancer progression and metastatic evolution for early diagnosis and precision therapy.


2021 ◽  
Vol 22 (13) ◽  
pp. 7039
Author(s):  
Wojciech Jelski ◽  
Barbara Mroczko

Brain tumors are the most common malignant primary intracranial tumors of the central nervous system. They are often recognized too late for successful therapy. Minimally invasive methods are needed to establish a diagnosis or monitor the response to treatment of CNS tumors. Brain tumors release molecular information into the circulation. Liquid biopsies collect and analyze tumor components in body fluids, and there is an increasing interest in the investigation of liquid biopsies as a substitute for tumor tissue. Tumor-derived biomarkers include nucleic acids, proteins, and tumor-derived extracellular vesicles that accumulate in blood or cerebrospinal fluid. In recent years, circulating tumor cells have also been identified in the blood of glioblastoma patients. In this review of the literature, the authors highlight the significance, regulation, and prevalence of molecular biomarkers such as O6-methylguanine-DNA methyltransferase, epidermal growth factor receptor, and isocitrate dehydrogenase. Herein, we critically review the available literature on plasma circulating tumor cells (CTCs), cell-free tumors (ctDNAs), circulating cell-free microRNAs (cfmiRNAs), and circulating extracellular vesicles (EVs) for the diagnosis and monitoring of brain tumor. Currently available markers have significant limitations.While much research has been conductedon these markers, there is still a significant amount that we do not yet understand, which may account for some conflicting reports in the literature.


2019 ◽  
Vol 20 (18) ◽  
pp. 4588 ◽  
Author(s):  
Eman A. Taha ◽  
Kisho Ono ◽  
Takanori Eguchi

Extracellular heat shock proteins (ex-HSPs) have been found in exosomes, oncosomes, membrane surfaces, as well as free HSP in cancer and various pathological conditions, also known as alarmins. Such ex-HSPs include HSP90 (α, β, Gp96, Trap1), HSP70, and large and small HSPs. Production of HSPs is coordinately induced by heat shock factor 1 (HSF1) and hypoxia-inducible factor 1 (HIF-1), while matrix metalloproteinase 3 (MMP-3) and heterochromatin protein 1 are novel inducers of HSPs. Oncosomes released by tumor cells are a major aspect of the resistance-associated secretory phenotype (RASP) by which immune evasion can be established. The concepts of RASP are: (i) releases of ex-HSP and HSP-rich oncosomes are essential in RASP, by which molecular co-transfer of HSPs with oncogenic factors to recipient cells can promote cancer progression and resistance against stresses such as hypoxia, radiation, drugs, and immune systems; (ii) RASP of tumor cells can eject anticancer drugs, targeted therapeutics, and immune checkpoint inhibitors with oncosomes; (iii) cytotoxic lipids can be also released from tumor cells as RASP. ex-HSP and membrane-surface HSP (mHSP) play immunostimulatory roles recognized by CD91+ scavenger receptor expressed by endothelial cells-1 (SREC-1)+ Toll-like receptors (TLRs)+ antigen-presenting cells, leading to antigen cross-presentation and T cell cross-priming, as well as by CD94+ natural killer cells, leading to tumor cytolysis. On the other hand, ex-HSP/CD91 signaling in cancer cells promotes cancer progression. HSPs in body fluids are potential biomarkers detectable by liquid biopsies in cancers and tissue-damaged diseases. HSP-based vaccines, inhibitors, and RNAi therapeutics are also reviewed.


Biology ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 105
Author(s):  
Simona Bernardi ◽  
Mirko Farina

Extracellular vesicles (exosomes, in particular) are essential in multicellular organisms because they mediate cell-to-cell communication via the transfer of secreted molecules. They are able to shuttle different cargo, from nucleic acids to proteins. The role of exosomes has been widely investigated in solid tumors, which gave us surprising results about their potential involvement in pathogenesis and created an opening for liquid biopsies. Less is known about exosomes in oncohematology, particularly concerning the malignancies deriving from myeloid lineage. In this review, we aim to present an overview of immunomodulation and the microenvironment alteration mediated by exosomes released by malicious myeloid cells. Afterwards, we review the studies reporting the use of exosomes as disease biomarkers and their influence in response to treatment, together with the recent experiences that have focused on the use of exosomes as therapeutic tools. The further development of new technologies and the increased knowledge of biological (exosomes) and clinical (myeloid neoplasia) aspects are expected to change the future approaches to these malignancies.


Author(s):  
Eman Taha ◽  
Kisho Ono ◽  
Takanori Eguchi

Extracellular vesicles (EV) released by tumor cells are a major aspect of the resistance-associated secretory phenotype (RASP), by which immune evasion can be established. Heat shock proteins (HSPs) are an evolutionarily conserved family of molecular chaperones, which stabilize proteins, minimize protein misfolding and aggregation within the cell, besides facilitating protein translocation, refolding and degradation. (i) Releases of extracellular HSPs (ex-HSP) and EV-associated HSPs (EV-HSP) are essential in RASP, by which molecular cotransfer of HSPs with oncogenic factors into recipient cells can promote cancer progression and resistance against stress such as hypoxia, radiation, chemicals, and immune system. (ii) RASP of tumor cells can eject anticancer drugs, molecularly targeted therapeutics, and immune checkpoint inhibitors with EVs. (iii) Cytotoxic lipids can be also released from tumor cells as RASP. Nevertheless, ex-HSP and EV-HSP can play immunostimulatory and immunosuppressive roles by binding to receptors such as LRP1/CD91/A2MR, scavenger receptors, and toll-like receptors expressed on recipient cells. Liquid biopsy of HSPs in body fluids may be useful in diagnosis, prognosis, and treatment in cancer. Regarding HSP90-targeted therapeutics, we summarize the pros, cons, and problem solutions in this review. Although production of HSPs are canonically induced by heat shock factor 1 (HSF1) and hypoxia-inducible factor 1 (HIF-1), recent studies discovered that production of HSPs is also regulated by matrix metalloproteinase 3 (MMP3) and heterochromatin protein 1 (HP1) and production of cochaperone CDC37 is reciprocally regulated by myeloid zinc finger 1 (MZF1) and SCAN-D1.


2021 ◽  
Vol 12 ◽  
Author(s):  
Katja Goričar ◽  
Vita Dolžan ◽  
Metka Lenassi

Biomarkers that can guide cancer therapy based on patients’ individual cancer molecular signature can enable a more effective treatment with fewer adverse events. Data on actionable somatic mutations and germline genetic variants, studied by personalized medicine and pharmacogenomics, can be obtained from tumor tissue or blood samples. As tissue biopsy cannot reflect the heterogeneity of the tumor or its temporal changes, liquid biopsy is a promising alternative approach. In recent years, extracellular vesicles (EVs) have emerged as a potential source of biomarkers in liquid biopsy. EVs are a heterogeneous population of membrane bound particles, which are released from all cells and accumulate into body fluids. They contain various proteins, lipids, nucleic acids (miRNA, mRNA, and DNA) and metabolites. In cancer, EV biomolecular composition and concentration are changed. Tumor EVs can promote the remodeling of the tumor microenvironment and pre-metastatic niche formation, and contribute to transfer of oncogenic potential or drug resistance during chemotherapy. This makes them a promising source of minimally invasive biomarkers. A limited number of clinical studies investigated EVs to monitor cancer progression, tumor evolution or drug resistance and several putative EV-bound protein and RNA biomarkers were identified. This review is focused on EVs as novel biomarker source for personalized medicine and pharmacogenomics in oncology. As several pharmacogenes and genes associated with targeted therapy, chemotherapy or hormonal therapy were already detected in EVs, they might be used for fine-tuning personalized cancer treatment.


2019 ◽  
Vol 47 ◽  
pp. 100647 ◽  
Author(s):  
M. Helena Vasconcelos ◽  
Hugo R. Caires ◽  
Artūrs Ābols ◽  
Cristina P.R. Xavier ◽  
Aija Linē

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Stefania Raimondo ◽  
Chiara Corrado ◽  
Lavinia Raimondi ◽  
Giacomo De Leo ◽  
Riccardo Alessandro

In recent years the role of tumor microenvironment in the progression of hematological malignancies has been widely recognized. Recent studies have focused on how cancer cells communicate within the microenvironment. Among several factors (cytokines, growth factors, and ECM molecules), a key role has been attributed to extracellular vesicles (EV), released from different cell types. EV (microvesicles and exosomes) may affect stroma remodeling, host cell functions, and tumor angiogenesis by inducing gene expression modulation in target cells, thus promoting cancer progression and metastasis. Microvesicles and exosomes can be recovered from the blood and other body fluids of cancer patients and contain and deliver genetic and proteomic contents that reflect the cell of origin, thus constituting a source of new predictive biomarkers involved in cancer development and serving as possible targets for therapies. Moreover, due to their specific cell-tropism and bioavailability, EV can be considered natural vehicles suitable for drug delivery. Here we will discuss the recent advances in the field of EV as actors in hematological cancer progression, pointing out the role of these vesicles in the tumor-host interplay and in their use as biomarkers for hematological malignancies.


2018 ◽  
Vol 20 (1) ◽  
pp. 41 ◽  
Author(s):  
Victor Navarro-Tableros ◽  
Yonathan Gomez ◽  
Giovanni Camussi ◽  
Maria Felice Brizzi

Lymphomas are heterogeneous diseases, and the term includes a number of histological subtypes that are characterized by different clinical behavior and molecular phenotypes. Valuable information on the presence of lymphoma cell-derived extracellular vesicles (LCEVs) in the bloodstream of patients suffering from this hematological cancer has recently been provided. In particular, it has been reported that the number and phenotype of LCEVs can both change as the disease progresses, as well as after treatment. Moreover, the role that LCEVs play in driving tumor immune escape has been reported. This makes LCEVs potential novel clinical tools for diagnosis, disease progression, and chemoresistance. LCEVs express surface markers and convey specific molecules in accordance with their cell of origin, which can be used as targets and thus lead to the development of specific therapeutics. This may be particularly relevant since circulating LCEVs are known to save lymphoma cells from anti-cluster of differentiation (CD)20-induced complement-dependent cytotoxicity. Therefore, effort should be directed toward investigating the feasibility of using LCEVs as predictive biomarkers of disease progression and/or response to treatment that can be translated to clinical use. The use of liquid biopsies in combination with serum EV quantification and cargo analysis have been also considered as potential approaches that can be pursued in the future. Upcoming research will also focus on the identification of specific molecular targets in order to generate vaccines and/or antibodies against LCEVs. Finally, the removal of circulating LCEVs has been proposed as a simple and non-invasive treatment approach. We herein provide an overview of the role of LCEVs in lymphoma diagnosis, immune tolerance, and drug resistance. In addition, alternative protocols that utilize LCEVs as therapeutic targets are discussed.


2020 ◽  
Vol 21 (12) ◽  
pp. 4463 ◽  
Author(s):  
Akiko Kogure ◽  
Yusuke Yoshioka ◽  
Takahiro Ochiya

The vast majority of cancer-related deaths are due to metastasis of the primary tumor that develops years to decades after apparent cures. However, it is difficult to effectively prevent or treat cancer metastasis. Recent studies have shown that communication between cancer cells and surrounding cells enables cancer progression and metastasis. The comprehensive term “extracellular vesicles” (EVs) describes lipid bilayer vesicles that are secreted to outside cells; EVs are well-established mediators of cell-to-cell communication. EVs participate in cancer progression and metastasis by transferring bioactive molecules, such as proteins and RNAs, including microRNAs (miRNAs), between cancer and various cells in local and distant microenvironments. Clinically, EVs functioning as diagnostic biomarkers, therapeutic targets, or even as anticancer drug-delivery vehicles have been emphasized as a result of their unique biological and pathophysiological characteristics. The potential therapeutic effects of EVs in cancer treatment are rapidly emerging and represent a new and important area of research. This review focuses on the therapeutic potential of EVs and discusses their utility for the inhibition of cancer progression, including metastasis.


Sign in / Sign up

Export Citation Format

Share Document