scholarly journals Extracellular Vesicles in Cancer Metastasis: Potential as Therapeutic Targets and Materials

2020 ◽  
Vol 21 (12) ◽  
pp. 4463 ◽  
Author(s):  
Akiko Kogure ◽  
Yusuke Yoshioka ◽  
Takahiro Ochiya

The vast majority of cancer-related deaths are due to metastasis of the primary tumor that develops years to decades after apparent cures. However, it is difficult to effectively prevent or treat cancer metastasis. Recent studies have shown that communication between cancer cells and surrounding cells enables cancer progression and metastasis. The comprehensive term “extracellular vesicles” (EVs) describes lipid bilayer vesicles that are secreted to outside cells; EVs are well-established mediators of cell-to-cell communication. EVs participate in cancer progression and metastasis by transferring bioactive molecules, such as proteins and RNAs, including microRNAs (miRNAs), between cancer and various cells in local and distant microenvironments. Clinically, EVs functioning as diagnostic biomarkers, therapeutic targets, or even as anticancer drug-delivery vehicles have been emphasized as a result of their unique biological and pathophysiological characteristics. The potential therapeutic effects of EVs in cancer treatment are rapidly emerging and represent a new and important area of research. This review focuses on the therapeutic potential of EVs and discusses their utility for the inhibition of cancer progression, including metastasis.

2020 ◽  
Vol 21 (14) ◽  
pp. 5163 ◽  
Author(s):  
Wei Hu ◽  
Xiang Song ◽  
Haibo Yu ◽  
Jingyu Sun ◽  
Yong Zhao

Extracellular vesicles (EVs), including exosomes and microvesicles, are nano-to-micrometer vesicles released from nearly all cellular types. EVs comprise a mixture of bioactive molecules (e.g., mRNAs, miRNAs, lipids, and proteins) that can be transported to the targeted cells/tissues via the blood or lymph circulation. Recently, EVs have received increased attention, owing to their emerging roles in cell-to-cell communication, or as biomarkers with the therapeutic potential to replace cell-based therapy. Diabetes comprises a group of metabolic disorders characterized by hyperglycemia that cause the development of life-threatening complications. The impacts of conventional clinical treatment are generally limited and are followed by many side effects, including hypoglycemia, obesity, and damage to the liver and kidney. Recently, several studies have shown that EVs released by stem cells and immune cells can regulate gene expression in the recipient cells, thus providing a strategy to treat diabetes and its complications. In this review, we summarize the results from currently available studies, demonstrating the therapeutic potentials of EVs in diabetes and diabetic complications. Additionally, we highlight recommendations for future research.


2016 ◽  
Vol 311 (5) ◽  
pp. F844-F851 ◽  
Author(s):  
Wei Zhang ◽  
Xiangjun Zhou ◽  
Hao Zhang ◽  
Qisheng Yao ◽  
Yutao Liu ◽  
...  

Extracellular vesicles (EV) are endogenously produced, membrane-bound vesicles that contain various molecules. Depending on their size and origins, EVs are classified into apoptotic bodies, microvesicles, and exosomes. A fundamental function of EVs is to mediate intercellular communication. In kidneys, recent research has begun to suggest a role of EVs, especially exosomes, in cell-cell communication by transferring proteins, mRNAs, and microRNAs to recipient cells as nanovectors. EVs may mediate the cross talk between various cell types within kidneys for the maintenance of tissue homeostasis. They may also mediate the cross talk between kidneys and other organs under physiological and pathological conditions. EVs have been implicated in the pathogenesis of both acute kidney injury and chronic kidney diseases, including renal fibrosis, end-stage renal disease, glomerular diseases, and diabetic nephropathy. The release of EVs with specific molecular contents into urine and plasma may be useful biomarkers for kidney disease. In addition, EVs produced by cultured cells may have therapeutic effects for these diseases. However, the role of EVs in kidney diseases is largely unclear, and the mechanism underlying EV production and secretion remains elusive. In this review, we introduce the basics of EVs and then analyze the present information about the involvement, diagnostic value, and therapeutic potential of EVs in major kidney diseases.


2021 ◽  
Vol 11 (22) ◽  
pp. 10787
Author(s):  
Giusi Alberti ◽  
Christian M. Sánchez-López ◽  
Alexia Andres ◽  
Radha Santonocito ◽  
Claudia Campanella ◽  
...  

Tumor-secreted extracellular vesicles (EVs) are the main mediators of cell-cell communication, permitting cells to exchange proteins, lipids, and metabolites in varying physiological and pathological conditions. They contain signature tumor-derived molecules that reflect the intracellular status of their cell of origin. Recent studies have shown that tumor cell-derived EVs can aid in cancer metastasis through the modulation of the tumor microenvironment, suppression of the immune system, pre-metastatic niche formation, and subsequent metastasis. EVs can easily be isolated from a variety of biological fluids, and their content makes them useful biomarkers for the diagnosis, prognosis, monitorization of cancer progression, and response to treatment. This review aims to explore the biomarkers of cancer cell-derived EVs obtained from liquid biopsies, in order to understand cancer progression and metastatic evolution for early diagnosis and precision therapy.


2019 ◽  
Vol 14 (5) ◽  
pp. 442-452 ◽  
Author(s):  
Wenjie Zheng ◽  
Yumin Yang ◽  
Russel Clive Sequeira ◽  
Colin E. Bishop ◽  
Anthony Atala ◽  
...  

Therapeutic effects of Mesenchymal Stem/Stromal Cells (MSCs) transplantation have been observed in various disease models. However, it is thought that MSCs-mediated effects largely depend on the paracrine manner of secreting cytokines, growth factors, and Extracellular Vesicles (EVs). Similarly, MSCs-derived EVs also showed therapeutic benefits in various liver diseases through alleviating fibrosis, improving regeneration of hepatocytes, and regulating immune activity. This review provides an overview of the MSCs, their EVs, and their therapeutic potential in treating various liver diseases including liver fibrosis, acute and chronic liver injury, and Hepatocellular Carcinoma (HCC). More specifically, the mechanisms by which MSC-EVs induce therapeutic benefits in liver diseases will be covered. In addition, comparisons between MSCs and their EVs were also evaluated as regenerative medicine against liver diseases. While the mechanisms of action and clinical efficacy must continue to be evaluated and verified, MSCs-derived EVs currently show tremendous potential and promise as a regenerative medicine treatment for liver disease in the future.


2021 ◽  
Vol 22 (4) ◽  
pp. 2213
Author(s):  
Natalia Diaz-Garrido ◽  
Cecilia Cordero ◽  
Yenifer Olivo-Martinez ◽  
Josefa Badia ◽  
Laura Baldomà

Communication between cells is crucial to preserve body homeostasis and health. Tightly controlled intercellular dialog is particularly relevant in the gut, where cells of the intestinal mucosa are constantly exposed to millions of microbes that have great impact on intestinal homeostasis by controlling barrier and immune functions. Recent knowledge involves extracellular vesicles (EVs) as mediators of such communication by transferring messenger bioactive molecules including proteins, lipids, and miRNAs between cells and tissues. The specific functions of EVs principally depend on the internal cargo, which upon delivery to target cells trigger signal events that modulate cellular functions. The vesicular cargo is greatly influenced by genetic, pathological, and environmental factors. This finding provides the basis for investigating potential clinical applications of EVs as therapeutic targets or diagnostic biomarkers. Here, we review current knowledge on the biogenesis and cargo composition of EVs in general terms. We then focus the attention to EVs released by cells of the intestinal mucosa and their impact on intestinal homeostasis in health and disease. We specifically highlight their role on epithelial barrier integrity, wound healing of epithelial cells, immunity, and microbiota shaping. Microbiota-derived EVs are not reviewed here.


2018 ◽  
Vol 314 (1) ◽  
pp. F9-F21 ◽  
Author(s):  
Eva Feigerlová ◽  
Shyue-Fang Battaglia-Hsu ◽  
Thierry Hauet ◽  
Jean-Louis Guéant

Important progress has been made on cytokine signaling in response to kidney injury in the past decade, especially cytokine signaling mediated by extracellular vesicles (EVs). For example, EVs released by injured renal tubular epithelial cells (TECs) can regulate intercellular communications and influence tissue recovery via both regulating the expression and transferring cytokines, growth factors, as well as other bioactive molecules at the site of injury. The effects of EVs on kidney tissue seem to vary depending on the sources of EVs; however, the literature data are often inconsistent. For example, in rodents EVs derived from mesenchymal stem cells (MSC-EVs) and endothelial progenitor cells (EPC-EVs) can have both beneficial and harmful effects on injured renal tissue. Caution is thus needed in the interpretation of these data as contradictory findings on EVs may not only be related to the origin of EVs, they can also be caused by the different methods used for EV isolation and the physiological and pathological states of the tissues/cells under which they were obtained. Here, we review and discuss our current understanding related to the immunomodulatory function of EVs in renal tubular repair in the hope of encouraging further investigations on mechanisms related to their antiinflammatory and reparative role to better define the therapeutic potential of EVs in renal diseases.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2316
Author(s):  
Lucia Catani ◽  
Michele Cavo ◽  
Francesca Palandri

Myeloproliferative Neoplasms (MPN) are acquired clonal disorders of the hematopoietic stem cells and include Essential Thrombocythemia, Polycythemia Vera and Myelofibrosis. MPN are characterized by mutations in three driver genes (JAK2, CALR and MPL) and by a state of chronic inflammation. Notably, MPN patients experience increased risk of thrombosis, disease progression, second neoplasia and evolution to acute leukemia. Extracellular vesicles (EVs) are a heterogeneous population of microparticles with a role in cell-cell communication. The EV-mediated cross-talk occurs via the trafficking of bioactive molecules such as nucleic acids, proteins, metabolites and lipids. Growing interest is focused on EVs and their potential impact on the regulation of blood cancers. Overall, EVs have been suggested to orchestrate the complex interplay between tumor cells and the microenvironment with a pivotal role in “education” and “crafting” of the microenvironment by regulating angiogenesis, coagulation, immune escape and drug resistance of tumors. This review is focused on the role of EVs in MPN. Specifically, we will provide an overview of recent findings on the involvement of EVs in MPN pathogenesis and discuss opportunities for their potential application as diagnostic and prognostic biomarkers.


2020 ◽  
Vol 11 (3) ◽  
pp. 49
Author(s):  
Kimin Kim ◽  
Jik-Han Jung ◽  
Hye Ju Yoo ◽  
Jae-Kyung Hyun ◽  
Ji-Ho Park ◽  
...  

Natural medicinal plants have attracted considerable research attention for their potential as effective drugs. The roots, leaves and stems of the plant, Dendropanax morbifera, which is endemic to southern regions of Asia, have long been used as a folk medicine to treat variety of diseases. However, the sap of this plant has not been widely studied and its bioactive properties have yet to be clearly elucidated. Here, we isolated extracellular vesicles from D. morbifera sap with the goal of improving the intracellular delivery efficiency and clinical effectiveness of bioactive compounds in D. morbifera sap. We further investigated the anti-metastatic effects of D. morbifera sap-derived extracellular vesicles (DMS-EVs) using a cancer metastasis model based on 3D microfluidic system that closely mimics the in vivo tumor environment. We found that DMS-EVs exerted a concentration-dependent suppressive effect on cancer-associated fibroblasts (CAFs), which are important mediators of cancer metastasis. DMS-EVs also altered expression level of genes, especially growth factor and extracellular matrix (ECM)-related genes, including integrin and collagen. Our findings suggest that DMS-EVs can act as anti-CAF agents to reduce CAFs in the tumor microenvironment. They further indicate the utility of our 3D microfluidic model for various drug-screening assays as a potential alternative to animal testing for use in validating therapeutic effects on cancer metastasis.


Biomolecules ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1327 ◽  
Author(s):  
Loredana Leggio ◽  
Greta Paternò ◽  
Silvia Vivarelli ◽  
Francesca L’Episcopo ◽  
Cataldo Tirolo ◽  
...  

Extracellular vesicles (EVs) are naturally occurring membranous structures secreted by normal and diseased cells, and carrying a wide range of bioactive molecules. In the central nervous system (CNS), EVs are important in both homeostasis and pathology. Through receptor–ligand interactions, direct fusion, or endocytosis, EVs interact with their target cells. Accumulating evidence indicates that EVs play crucial roles in the pathogenesis of many neurodegenerative disorders (NDs), including Parkinson′s disease (PD). PD is the second most common ND, characterized by the progressive loss of dopaminergic (DAergic) neurons within the Substantia Nigra pars compacta (SNpc). In PD, EVs are secreted by both neurons and glial cells, with either beneficial or detrimental effects, via a complex program of cell-to-cell communication. The functions of EVs in PD range from their etiopathogenetic relevance to their use as diagnostic tools and innovative carriers of therapeutics. Because they can cross the blood–brain barrier, EVs can be engineered to deliver bioactive molecules (e.g., small interfering RNAs, catalase) within the CNS. This review summarizes the latest findings regarding the role played by EVs in PD etiology, diagnosis, prognosis, and therapy, with a particular focus on their use as novel PD nanotherapeutics.


Hypertension ◽  
2021 ◽  
Vol 77 (1) ◽  
pp. 28-38
Author(s):  
Olga Martinez-Arroyo ◽  
Ana Ortega ◽  
Josep Redon ◽  
Raquel Cortes

Hypertension-mediated organ damage frequently includes renal function decline in which several mechanisms are involved. The present review outlines the state of the art on extracellular vesicles in hypertension and hypertension-related renal damage. Emerging evidence indicates that extracellular vesicles, small vesicles secreted by most cell types and body fluids, are involved in cell-to-cell communication and are key players mediating biological processes such as inflammation, endothelial dysfunction or fibrosis, mechanisms present the onset and progression of hypertension-associated kidney disease. We address the potential use of extracellular vesicles as markers of hypertension-mediated kidney damage severity and their application as therapeutic agents in hypertension-associated renal damage. The capacity of exosomes to deliver a wide variety of cargos to the target cell efficiently makes them a potential drug delivery system for treatment of renal diseases.


Sign in / Sign up

Export Citation Format

Share Document