scholarly journals Review: Using Unmanned Aerial Vehicles (UAVs) as Mobile Sensing Platforms (MSPs) for Disaster Response, Civil Security and Public Safety

Drones ◽  
2019 ◽  
Vol 3 (3) ◽  
pp. 59 ◽  
Author(s):  
Hanno Hildmann ◽  
Ernö Kovacs

The use of UAVs in areas ranging from agriculture over urban services to entertainment or simply as a hobby has rapidly grown over the last years. Regarding serious/commercial applications, UAVs have been considered in the literature, especially as mobile sensing/actuation platforms (i.e., as a delivery platform for an increasingly wide range of sensors and actuators). With regard to timely, cost-effective and very rich data acquisition, both, NEC Research as well as TNO are pursuing investigations into the use of UAVs and swarms of UAVs for scenarios where high-resolution requirements, prohibiting environments or tight time constraints render traditional approaches ineffective. In this review article, we provide a brief overview of safety and security-focused application areas that we identified as main targets for industrial and commercial projects, especially in the context of intelligent autonomous systems and autonomous/semi-autonomously operating swarms. We discuss a number of challenges related to the deployment of UAVs in general and to their deployment within the identified application areas in particular. As such, this article is meant to serve as a review and overview of the literature and the state-of-the-art, but also to offer an outlook over our possible (near-term) future work and the challenges that we will face there.

Ingeniería ◽  
2018 ◽  
Vol 23 (1) ◽  
pp. 70 ◽  
Author(s):  
Edwin Blasnilo Rua Ramirez ◽  
Fernando Jimenez Diaz ◽  
German Andres Gutierrez Arias ◽  
Nelson Iván Villamizar

Context: 3D printing can be used for a wide range of tasks such as the design and testing of prototypes and finished products in a shorter time. In mechanical engineering, prototype designs are continuously generated in academic class activities and final coursework projects by students and teachers. However, students show limitations while understanding the abstract concepts represented with such designs.Method: Firstly, a large scale 3D printer with improved technical specifications compared to traditional market options and similar price, was fabricated. By means of free software and hardware tools and easy-to-obtain alternative manufacturing materials, it was possible to decrease its manufacturing and operating costs. Then a set of study cases utilising the 3D printer in three different subject classes were designed and tested with two cohorts of students of Mechanical Engineering programme.Results: It was feasible to fabricate a cost-effective and practical 3D printer for constructing prototypes and pieces that benefit teaching and learning concepts in engineering and design areas. The experiments carried out in three subjects of engineering courses with second-year students, showed a similar trend of improving the average course grades, as it was observed in two cohorts in different terms.Conclusions: This type of low cost 3D printer obtained academic advantages as a didactic tool for the learning process in engineering and design subjects. Future work will consider applying this tool to other courses and subjects to further evaluate its convenience and effectivity.


2021 ◽  
Vol 8 ◽  
Author(s):  
Asma Seddaoui ◽  
Chakravarthini Mini Saaj ◽  
Manu Harikrishnan Nair

Ground-based applications of robotics and autonomous systems (RASs) are fast advancing, and there is a growing appetite for developing cost-effective RAS solutions for in situ servicing, debris removal, manufacturing, and assembly missions. An orbital space robot, that is, a spacecraft mounted with one or more robotic manipulators, is an inevitable system for a range of future in-orbit services. However, various practical challenges make controlling a space robot extremely difficult compared with its terrestrial counterpart. The state of the art of modeling the kinematics and dynamics of a space robot, operating in the free-flying and free-floating modes, has been well studied by researchers. However, these two modes of operation have various shortcomings, which can be overcome by operating the space robot in the controlled-floating mode. This tutorial article aims to address the knowledge gap in modeling complex space robots operating in the controlled-floating mode and under perturbed conditions. The novel research contribution of this article is the refined dynamic model of a chaser space robot, derived with respect to the moving target while accounting for the internal perturbations due to constantly changing the center of mass, the inertial matrix, Coriolis, and centrifugal terms of the coupled system; it also accounts for the external environmental disturbances. The nonlinear model presented accurately represents the multibody coupled dynamics of a space robot, which is pivotal for precise pose control. Simulation results presented demonstrate the accuracy of the model for closed-loop control. In addition to the theoretical contributions in mathematical modeling, this article also offers a commercially viable solution for a wide range of in-orbit missions.


2019 ◽  
Vol 16 (6) ◽  
pp. 377 ◽  
Author(s):  
Elizabeth C. Gillispie ◽  
Stephen E. Taylor ◽  
Nikolla P. Qafoku ◽  
Michael F. Hochella Jr

Environmental contextNanominerals are more reactive than bulk minerals, a property that strongly influences the fate of nutrients and contaminants in soils and plants. This review discusses applications of Fe- and Mn-nano-oxides in agricultural systems and their potential to be used as fertiliser and contaminant adsorbents, while addressing potential phytotoxicity. We discuss areas where significant advances are needed, and provide a framework for future work. AbstractRising population growth and increase global food demand have made meeting the demands of food production and security a major challenge worldwide. Nanotechnology is starting to become a viable remediation strategy of interest in farming. Ultimately, it may be used as a sustainability tool in agricultural systems. In these roles, it could be used to increase the efficiency of techniques such as food monitoring, pathogen control, water treatment and targeted delivery of agrochemicals. In addition to these uses, nanoparticles, particularly nano-metal-oxides (NMOs), have been engineered to act as contaminant scavengers and could be applied to a wide range of systems. Numerous studies have investigated the scavenging ability of NMOs, but few have investigated them in this role in the context of agricultural and food systems. Within these systems, however, research has demonstrated the potential of NMOs to increase crop health and yield but few have studied using NMOs as sources of key micronutrients, such as Fe and Mn. In this review, we address previous research that has used Fe- and Mn-NMOs in agricultural systems, particularly the worldwide crop production of the four major staple foods – rice, wheat, maize and soybeans – highlighting their application as fertilisers and sorbents. Fe- and Mn-NMOs are strong candidates for immobilisation of agricultural contaminants in soils and, because they are naturally ubiquitous, they have the potential to be a cost-effective and sustainable technology compared with other remediation strategies.


2013 ◽  
Vol 705 ◽  
pp. 270-274
Author(s):  
Jumril Yunas ◽  
Yeop Majlis Burhanuddin ◽  
Eka Pawinanto Roer

A Planar square stack coupled inductor coils on silicon substrate has been fabricated using MEMS technology. The fabrication process utilized a simple, cost effective process technique as well as CMOS compatible resulting to a reproducible and good controlled process. The basic characteristics of the coupled inductors were discussed in wide range of operating frequency. The analysis results showed that the geometry of the inductor coil strongly affects the basic characteristics of the coils. The results of the study have promised a good prospect for the development of fully integrated planar magnetic field generator for sensing and actuating purposes.


2020 ◽  
pp. 1192-1198
Author(s):  
M.S. Mohammad ◽  
Tibebe Tesfaye ◽  
Kim Ki-Seong

Ultrasonic thickness gauges are easy to operate and reliable, and can be used to measure a wide range of thicknesses and inspect all engineering materials. Supplementing the simple ultrasonic thickness gauges that present results in either a digital readout or as an A-scan with systems that enable correlating the measured values to their positions on the inspected surface to produce a two-dimensional (2D) thickness representation can extend their benefits and provide a cost-effective alternative to expensive advanced C-scan machines. In previous work, the authors introduced a system for the positioning and mapping of the values measured by the ultrasonic thickness gauges and flaw detectors (Tesfaye et al. 2019). The system is an alternative to the systems that use mechanical scanners, encoders, and sophisticated UT machines. It used a camera to record the probe’s movement and a projected laser grid obtained by a laser pattern generator to locate the probe on the inspected surface. In this paper, a novel system is proposed to be applied to flat surfaces, in addition to overcoming the other limitations posed due to the use of the laser projection. The proposed system uses two video cameras, one to monitor the probe’s movement on the inspected surface and the other to capture the corresponding digital readout of the thickness gauge. The acquired images of the probe’s position and thickness gauge readout are processed to plot the measured data in a 2D color-coded map. The system is meant to be simpler and more effective than the previous development.


Author(s):  
Ilana Seager ◽  
Douglas S. Mennin ◽  
Amelia Aldao

Generalized anxiety disorder (GAD) is a debilitating condition characterized by excessive, pervasive, uncontrollable, and paralyzing worries about a wide range of future situations. Individuals with this condition frequently find themselves stuck in worry and tension cycles in futile attempts at reducing uncertainty and increasing control. GAD has been associated with substantial impairments in functioning and reduced quality of life. GAD remains poorly understood, and the long-term efficacy and end-state functioning resulting from treatment are weaker compared to other anxiety disorders. Some treatments (e.g., emotion regulation therapy, acceptance-based behavioral therapy) have improved efficacy, partly by targeting emotional dysfunction. Basic psychopathology research has focused on identifying the role of negative affect in GAD, so little is known about how positive affect is experienced and regulated in this disorder. This is particularly important in light of the overlap of this condition with major depressive disorder, which is characterized by low or suppressed positive emotion. Developing such an understanding is essential to further improve the efficacy of emotion-based treatments. This chapter reviews current and future directions in the study of positive affect in GAD. The chapter reviews the nascent research on positive affect and GAD, then illustrates dimensions of future work.


Author(s):  
Allan Matthews ◽  
Adrian Leyland

Over the past twenty years or so, there have been major steps forward both in the understanding of tribological mechanisms and in the development of new coating and treatment techniques to better “engineer” surfaces to achieve reductions in wear and friction. Particularly in the coatings tribology field, improved techniques and theories which enable us to study and understand the mechanisms occurring at the “nano”, “micro” and “macro” scale have allowed considerable progress to be made in (for example) understanding contact mechanisms and the influence of “third bodies” [1–5]. Over the same period, we have seen the emergence of the discipline which we now call “Surface Engineering”, by which, ideally, a bulk material (the ‘substrate’) and a coating are combined in a way that provides a cost-effective performance enhancement of which neither would be capable without the presence of the other. It is probably fair to say that the emergence and recognition of Surface Engineering as a field in its own right has been driven largely by the availability of “plasma”-based coating and treatment processes, which can provide surface properties which were previously unachievable. In particular, plasma-assisted (PA) physical vapour deposition (PVD) techniques, allowing wear-resistant ceramic thin films such as titanium nitride (TiN) to be deposited on a wide range of industrial tooling, gave a step-change in industrial productivity and manufactured product quality, and caught the attention of engineers due to the remarkable cost savings and performance improvements obtained. Subsequently, so-called 2nd- and 3rd-generation ceramic coatings (with multilayered or nanocomposite structures) have recently been developed [6–9], to further extend tool performance — the objective typically being to increase coating hardness further, or extend hardness capabilities to higher temperatures.


Biostatistics ◽  
2019 ◽  
Author(s):  
Dane R Van Domelen ◽  
Emily M Mitchell ◽  
Neil J Perkins ◽  
Enrique F Schisterman ◽  
Amita K Manatunga ◽  
...  

SUMMARYMeasuring a biomarker in pooled samples from multiple cases or controls can lead to cost-effective estimation of a covariate-adjusted odds ratio, particularly for expensive assays. But pooled measurements may be affected by assay-related measurement error (ME) and/or pooling-related processing error (PE), which can induce bias if ignored. Building on recently developed methods for a normal biomarker subject to additive errors, we present two related estimators for a right-skewed biomarker subject to multiplicative errors: one based on logistic regression and the other based on a Gamma discriminant function model. Applied to a reproductive health dataset with a right-skewed cytokine measured in pools of size 1 and 2, both methods suggest no association with spontaneous abortion. The fitted models indicate little ME but fairly severe PE, the latter of which is much too large to ignore. Simulations mimicking these data with a non-unity odds ratio confirm validity of the estimators and illustrate how PE can detract from pooling-related gains in statistical efficiency. These methods address a key issue associated with the homogeneous pools study design and should facilitate valid odds ratio estimation at a lower cost in a wide range of scenarios.


Author(s):  
Mamou Diallo ◽  
Servé W. M. Kengen ◽  
Ana M. López-Contreras

AbstractThe Clostridium genus harbors compelling organisms for biotechnological production processes; while acetogenic clostridia can fix C1-compounds to produce acetate and ethanol, solventogenic clostridia can utilize a wide range of carbon sources to produce commercially valuable carboxylic acids, alcohols, and ketones by fermentation. Despite their potential, the conversion by these bacteria of carbohydrates or C1 compounds to alcohols is not cost-effective enough to result in economically viable processes. Engineering solventogenic clostridia by impairing sporulation is one of the investigated approaches to improve solvent productivity. Sporulation is a cell differentiation process triggered in bacteria in response to exposure to environmental stressors. The generated spores are metabolically inactive but resistant to harsh conditions (UV, chemicals, heat, oxygen). In Firmicutes, sporulation has been mainly studied in bacilli and pathogenic clostridia, and our knowledge of sporulation in solvent-producing or acetogenic clostridia is limited. Still, sporulation is an integral part of the cellular physiology of clostridia; thus, understanding the regulation of sporulation and its connection to solvent production may give clues to improve the performance of solventogenic clostridia. This review aims to provide an overview of the triggers, characteristics, and regulatory mechanism of sporulation in solventogenic clostridia. Those are further compared to the current knowledge on sporulation in the industrially relevant acetogenic clostridia. Finally, the potential applications of spores for process improvement are discussed.Key Points• The regulatory network governing sporulation initiation varies in solventogenic clostridia.• Media composition and cell density are the main triggers of sporulation.• Spores can be used to improve the fermentation process.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 142
Author(s):  
Hu Li ◽  
Raffaello Papadakis

Graphene is a material with outstanding properties and numerous potential applications in a wide range of research and technology areas, spanning from electronics, energy materials, sensors, and actuators to life-science and many more. However, the insolubility and poor dispersibility of graphene are two major problems hampering its use in certain applications. Tethering mono-, di-, or even poly-saccharides on graphene through click-chemistry is gaining more and more attention as a key modification approach leading to new graphene-based materials (GBM) with improved hydrophilicity and substantial dispersibility in polar solvents, e.g., water. The attachment of (poly)saccharides on graphene further renders the final GBMs biocompatible and could open new routes to novel biomedical and environmental applications. In this review, recent modifications of graphene and other carbon rich materials (CRMs) through click chemistry are reviewed.


Sign in / Sign up

Export Citation Format

Share Document