scholarly journals Automated Spleen Injury Detection Using 3D Active Contours and Machine Learning

Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 382
Author(s):  
Julie Wang ◽  
Alexander Wood ◽  
Chao Gao ◽  
Kayvan Najarian ◽  
Jonathan Gryak

The spleen is one of the most frequently injured organs in blunt abdominal trauma. Computed tomography (CT) is the imaging modality of choice to assess patients with blunt spleen trauma, which may include lacerations, subcapsular or parenchymal hematomas, active hemorrhage, and vascular injuries. While computer-assisted diagnosis systems exist for other conditions assessed using CT scans, the current method to detect spleen injuries involves the manual review of scans by radiologists, which is a time-consuming and repetitive process. In this study, we propose an automated spleen injury detection method using machine learning. CT scans from patients experiencing traumatic injuries were collected from Michigan Medicine and the Crash Injury Research Engineering Network (CIREN) dataset. Ninety-nine scans of healthy and lacerated spleens were split into disjoint training and test sets, with random forest (RF), naive Bayes, SVM, k-nearest neighbors (k-NN) ensemble, and subspace discriminant ensemble models trained via 5-fold cross validation. Of these models, random forest performed the best, achieving an Area Under the receiver operating characteristic Curve (AUC) of 0.91 and an F1 score of 0.80 on the test set. These results suggest that an automated, quantitative assessment of traumatic spleen injury has the potential to enable faster triage and improve patient outcomes.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sunhae Kim ◽  
Hye-Kyung Lee ◽  
Kounseok Lee

AbstractMinnesota Multiphasic Personality Inventory-2 (MMPI-2) is a widely used tool for early detection of psychological maladjustment and assessing the level of adaptation for a large group in clinical settings, schools, and corporations. This study aims to evaluate the utility of MMPI-2 in assessing suicidal risk using the results of MMPI-2 and suicidal risk evaluation. A total of 7,824 datasets collected from college students were analyzed. The MMPI-2-Resturcutred Clinical Scales (MMPI-2-RF) and the response results for each question of the Mini International Neuropsychiatric Interview (MINI) suicidality module were used. For statistical analysis, random forest and K-Nearest Neighbors (KNN) techniques were used with suicidal ideation and suicide attempt as dependent variables and 50 MMPI-2 scale scores as predictors. On applying the random forest method to suicidal ideation and suicidal attempts, the accuracy was 92.9% and 95%, respectively, and the Area Under the Curves (AUCs) were 0.844 and 0.851, respectively. When the KNN method was applied, the accuracy was 91.6% and 94.7%, respectively, and the AUCs were 0.722 and 0.639, respectively. The study confirmed that machine learning using MMPI-2 for a large group provides reliable accuracy in classifying and predicting the subject's suicidal ideation and past suicidal attempts.


2018 ◽  
Vol 26 (1) ◽  
pp. 141-155 ◽  
Author(s):  
Li Luo ◽  
Fengyi Zhang ◽  
Yao Yao ◽  
RenRong Gong ◽  
Martina Fu ◽  
...  

Surgery cancellations waste scarce operative resources and hinder patients’ access to operative services. In this study, the Wilcoxon and chi-square tests were used for predictor selection, and three machine learning models – random forest, support vector machine, and XGBoost – were used for the identification of surgeries with high risks of cancellation. The optimal performances of the identification models were as follows: sensitivity − 0.615; specificity − 0.957; positive predictive value − 0.454; negative predictive value − 0.904; accuracy − 0.647; and area under the receiver operating characteristic curve − 0.682. Of the three models, the random forest model achieved the best performance. Thus, the effective identification of surgeries with high risks of cancellation is feasible with stable performance. Models and sampling methods significantly affect the performance of identification. This study is a new application of machine learning for the identification of surgeries with high risks of cancellation and facilitation of surgery resource management.


Author(s):  
Chaudhari Shraddha

Activity recognition in humans is one of the active challenges that find its application in numerous fields such as, medical health care, military, manufacturing, assistive techniques and gaming. Due to the advancements in technologies the usage of smartphones in human lives has become inevitable. The sensors in the smartphones help us to measure the essential vital parameters. These measured parameters enable us to monitor the activities of humans, which we call as human activity recognition. We have applied machine learning techniques on a publicly available dataset. K-Nearest Neighbors and Random Forest classification algorithms are applied. In this paper, we have designed and implemented an automatic human activity recognition system that independently recognizes the actions of the humans. This system is able to recognize the activities such as Laying, Sitting, Standing, Walking, Walking downstairs and Walking upstairs. The results obtained show that, the KNN and Random Forest Algorithms gives 90.22% and 92.70% respectively of overall accuracy in detecting the activities.


2020 ◽  
Author(s):  
Jun Ke ◽  
Yiwei Chen ◽  
Xiaoping Wang ◽  
Zhiyong Wu ◽  
qiongyao Zhang ◽  
...  

Abstract BackgroundThe purpose of this study is to identify the risk factors of in-hospital mortality in patients with acute coronary syndrome (ACS) and to evaluate the performance of traditional regression and machine learning prediction models.MethodsThe data of ACS patients who entered the emergency department of Fujian Provincial Hospital from January 1, 2017 to March 31, 2020 for chest pain were retrospectively collected. The study used univariate and multivariate logistic regression analysis to identify risk factors for in-hospital mortality of ACS patients. The traditional regression and machine learning algorithms were used to develop predictive models, and the sensitivity, specificity, and receiver operating characteristic curve were used to evaluate the performance of each model.ResultsA total of 7810 ACS patients were included in the study, and the in-hospital mortality rate was 1.75%. Multivariate logistic regression analysis found that age and levels of D-dimer, cardiac troponin I, N-terminal pro-B-type natriuretic peptide (NT-proBNP), lactate dehydrogenase (LDH), high-density lipoprotein (HDL) cholesterol, and calcium channel blockers were independent predictors of in-hospital mortality. The study found that the area under the receiver operating characteristic curve of the models developed by logistic regression, gradient boosting decision tree (GBDT), random forest, and support vector machine (SVM) for predicting the risk of in-hospital mortality were 0.963, 0.960, 0.963, and 0.959, respectively. Feature importance evaluation found that NT-proBNP, LDH, and HDL cholesterol were top three variables that contribute the most to the prediction performance of the GBDT model and random forest model.ConclusionsThe predictive model developed using logistic regression, GBDT, random forest, and SVM algorithms can be used to predict the risk of in-hospital death of ACS patients. Based on our findings, we recommend that clinicians focus on monitoring the changes of NT-proBNP, LDH, and HDL cholesterol, as this may improve the clinical outcomes of ACS patients.


2020 ◽  
Vol 14 ◽  

Breast Cancer (BC) is amongst the most common and leading causes of deaths in women throughout the world. Recently, classification and data analysis tools are being widely used in the medical field for diagnosis, prognosis and decision making to help lower down the risks of people dying or suffering from diseases. Advanced machine learning methods have proven to give hope for patients as this has helped the doctors in early detection of diseases like Breast Cancer that can be fatal, in support with providing accurate outcomes. However, the results highly depend on the techniques used for feature selection and classification which will produce a strong machine learning model. In this paper, a performance comparison is conducted using four classifiers which are Multilayer Perceptron (MLP), Support Vector Machine (SVM), K-Nearest Neighbors (KNN) and Random Forest on the Wisconsin Breast Cancer dataset to spot the most effective predictors. The main goal is to apply best machine learning classification methods to predict the Breast Cancer as benign or malignant using terms such as accuracy, f-measure, precision and recall. Experimental results show that Random forest is proven to achieve the highest accuracy of 99.26% on this dataset and features, while SVM and KNN show 97.78% and 97.04% accuracy respectively. MLP shows the least accuracy of 94.07%. All the experiments are conducted using RStudio as the data mining tool platform.


mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Begüm D. Topçuoğlu ◽  
Nicholas A. Lesniak ◽  
Mack T. Ruffin ◽  
Jenna Wiens ◽  
Patrick D. Schloss

ABSTRACT Machine learning (ML) modeling of the human microbiome has the potential to identify microbial biomarkers and aid in the diagnosis of many diseases such as inflammatory bowel disease, diabetes, and colorectal cancer. Progress has been made toward developing ML models that predict health outcomes using bacterial abundances, but inconsistent adoption of training and evaluation methods call the validity of these models into question. Furthermore, there appears to be a preference by many researchers to favor increased model complexity over interpretability. To overcome these challenges, we trained seven models that used fecal 16S rRNA sequence data to predict the presence of colonic screen relevant neoplasias (SRNs) (n = 490 patients, 261 controls and 229 cases). We developed a reusable open-source pipeline to train, validate, and interpret ML models. To show the effect of model selection, we assessed the predictive performance, interpretability, and training time of L2-regularized logistic regression, L1- and L2-regularized support vector machines (SVM) with linear and radial basis function kernels, a decision tree, random forest, and gradient boosted trees (XGBoost). The random forest model performed best at detecting SRNs with an area under the receiver operating characteristic curve (AUROC) of 0.695 (interquartile range [IQR], 0.651 to 0.739) but was slow to train (83.2 h) and not inherently interpretable. Despite its simplicity, L2-regularized logistic regression followed random forest in predictive performance with an AUROC of 0.680 (IQR, 0.625 to 0.735), trained faster (12 min), and was inherently interpretable. Our analysis highlights the importance of choosing an ML approach based on the goal of the study, as the choice will inform expectations of performance and interpretability. IMPORTANCE Diagnosing diseases using machine learning (ML) is rapidly being adopted in microbiome studies. However, the estimated performance associated with these models is likely overoptimistic. Moreover, there is a trend toward using black box models without a discussion of the difficulty of interpreting such models when trying to identify microbial biomarkers of disease. This work represents a step toward developing more-reproducible ML practices in applying ML to microbiome research. We implement a rigorous pipeline and emphasize the importance of selecting ML models that reflect the goal of the study. These concepts are not particular to the study of human health but can also be applied to environmental microbiology studies.


2019 ◽  
Vol 90 (3) ◽  
pp. e33.1-e33
Author(s):  
K Li ◽  
VN Vakharia ◽  
R Sparks ◽  
LGS França ◽  
A McEvoy ◽  
...  

ObjectivesOptimal trajectory planning for cranial laser interstitial thermal therapy (cLITT) in drug resistant focal mesial temporal lobe epilepsy (MTLE).DesignA composite ablation score of ablated AHC minus ablated PHG volumes were calculated and normalised. Random forest and linear regression were implemented to predict composite ablation scores and determine the optimal entry and target point combinations to maximize this.SubjectsTen patients with hippocampal sclerosis were included.MethodsComputer Assisted Planning (CAP) cLITT trajectories were generated using entry regions that include the inferior occipital gyri (IOG), middle occipital gyri (MOG), inferior temporal gyri (ITG) and middle temporal gyri (MTG). Target points were varied by sequential erosions and transformations of the centroid of the amygdala. In total 760 trajectory combinations were generated per patient and ablation volumes were calculated based on a conservative 15 mm maximum ablation diameter.ResultsLinear regression was superior to random forest predictions. Linear regression indicated that maximal composite ablation scores were associated with entry points that clustered around the junction of the IOG, MOG and MTG. The optimal target point was a translation of the centroid of the amygdala anteriorly and medially.ConclusionsMachine learning techniques accurately predict composite ablation scores with linear regression outperforming the random forest approach. Optimal CAP entry points for cLITT maximize ablation of the AHC and spare the PHG.


Author(s):  
Sunhae Kim ◽  
Hye-Kyung Lee ◽  
Kounseok Lee

(1) Background: The Patient Health Questionnaire-9 (PHQ-9) is a tool that screens patients for depression in primary care settings. In this study, we evaluated the efficacy of PHQ-9 in evaluating suicidal ideation (2) Methods: A total of 8760 completed questionnaires collected from college students were analyzed. The PHQ-9 was scored in combination with and evaluated against four categories (PHQ-2, PHQ-8, PHQ-9, and PHQ-10). Suicidal ideations were evaluated using the Mini-International Neuropsychiatric Interview suicidality module. Analyses used suicide ideation as the dependent variable, and machine learning (ML) algorithms, k-nearest neighbors, linear discriminant analysis (LDA), and random forest. (3) Results: Random forest application using the nine items of the PHQ-9 revealed an excellent area under the curve with a value of 0.841, with 94.3% accuracy. The positive and negative predictive values were 84.95% (95% CI = 76.03–91.52) and 95.54% (95% CI = 94.42–96.48), respectively. (4) Conclusion: This study confirmed that ML algorithms using PHQ-9 in the primary care field are reliably accurate in screening individuals with suicidal ideation.


Glass Industry is considered one of the most important industries in the world. The Glass is used everywhere, from water bottles to X-Ray and Gamma Rays protection. This is a non-crystalline, amorphous solid that is most often transparent. There are lots of uses of glass, and during investigation in a crime scene, the investigators need to know what is type of glass in a scene. To find out the type of glass, we will use the online dataset and machine learning to solve the above problem. We will be using ML algorithms such as Artificial Neural Network (ANN), K-nearest neighbors (KNN) algorithm, Support Vector Machine (SVM) algorithm, Random Forest algorithm, and Logistic Regression algorithm. By comparing all the algorithm Random Forest did the best in glass classification.


2021 ◽  
Vol 11 ◽  
Author(s):  
Ximing Nie ◽  
Yuan Cai ◽  
Jingyi Liu ◽  
Xiran Liu ◽  
Jiahui Zhao ◽  
...  

Objectives: This study aims to investigate whether the machine learning algorithms could provide an optimal early mortality prediction method compared with other scoring systems for patients with cerebral hemorrhage in intensive care units in clinical practice.Methods: Between 2008 and 2012, from Intensive Care III (MIMIC-III) database, all cerebral hemorrhage patients monitored with the MetaVision system and admitted to intensive care units were enrolled in this study. The calibration, discrimination, and risk classification of predicted hospital mortality based on machine learning algorithms were assessed. The primary outcome was hospital mortality. Model performance was assessed with accuracy and receiver operating characteristic curve analysis.Results: Of 760 cerebral hemorrhage patients enrolled from MIMIC database [mean age, 68.2 years (SD, ±15.5)], 383 (50.4%) patients died in hospital, and 377 (49.6%) patients survived. The area under the receiver operating characteristic curve (AUC) of six machine learning algorithms was 0.600 (nearest neighbors), 0.617 (decision tree), 0.655 (neural net), 0.671(AdaBoost), 0.819 (random forest), and 0.725 (gcForest). The AUC was 0.423 for Acute Physiology and Chronic Health Evaluation II score. The random forest had the highest specificity and accuracy, as well as the greatest AUC, showing the best ability to predict in-hospital mortality.Conclusions: Compared with conventional scoring system and the other five machine learning algorithms in this study, random forest algorithm had better performance in predicting in-hospital mortality for cerebral hemorrhage patients in intensive care units, and thus further research should be conducted on random forest algorithm.


Sign in / Sign up

Export Citation Format

Share Document