scholarly journals EEG Fractal Analysis Reflects Brain Impairment after Stroke

Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 592
Author(s):  
Maria Rubega ◽  
Emanuela Formaggio ◽  
Franco Molteni ◽  
Eleonora Guanziroli ◽  
Roberto Di Marco ◽  
...  

Stroke is the commonest cause of disability. Novel treatments require an improved understanding of the underlying mechanisms of recovery. Fractal approaches have demonstrated that a single metric can describe the complexity of seemingly random fluctuations of physiological signals. We hypothesize that fractal algorithms applied to electroencephalographic (EEG) signals may track brain impairment after stroke. Sixteen stroke survivors were studied in the hyperacute (<48 h) and in the acute phase (∼1 week after stroke), and 35 stroke survivors during the early subacute phase (from 8 days to 32 days and after ∼2 months after stroke): We compared resting-state EEG fractal changes using fractal measures (i.e., Higuchi Index, Tortuosity) with 11 healthy controls. Both Higuchi index and Tortuosity values were significantly lower after a stroke throughout the acute and early subacute stage compared to healthy subjects, reflecting a brain activity which is significantly less complex. These indices may be promising metrics to track behavioral changes in the very early stage after stroke. Our findings might contribute to the neurorehabilitation quest in identifying reliable biomarkers for a better tailoring of rehabilitation pathways.

2010 ◽  
Vol 24 (2) ◽  
pp. 131-135 ◽  
Author(s):  
Włodzimierz Klonowski ◽  
Pawel Stepien ◽  
Robert Stepien

Over 20 years ago, Watt and Hameroff (1987 ) suggested that consciousness may be described as a manifestation of deterministic chaos in the brain/mind. To analyze EEG-signal complexity, we used Higuchi’s fractal dimension in time domain and symbolic analysis methods. Our results of analysis of EEG-signals under anesthesia, during physiological sleep, and during epileptic seizures lead to a conclusion similar to that of Watt and Hameroff: Brain activity, measured by complexity of the EEG-signal, diminishes (becomes less chaotic) when consciousness is being “switched off”. So, consciousness may be described as a manifestation of deterministic chaos in the brain/mind.


2021 ◽  
pp. 1-10
Author(s):  
Shahul Mujib Kamal ◽  
Norazryana Mat Dawi ◽  
Hamidreza Namazi

BACKGROUND: Walking like many other actions of a human is controlled by the brain through the nervous system. In fact, if a problem occurs in our brain, we cannot walk correctly. Therefore, the analysis of the coupling of brain activity and walking is very important especially in rehabilitation science. The complexity of movement paths is one of the factors that affect human walking. For instance, if we walk on a path that is more complex, our brain activity increases to adjust our movements. OBJECTIVE: This study for the first time analyzed the coupling of walking paths and brain reaction from the information point of view. METHODS: We analyzed the Shannon entropy for electroencephalography (EEG) signals versus the walking paths in order to relate their information contents. RESULTS: According to the results, walking on a path that contains more information causes more information in EEG signals. A strong correlation (p= 0.9999) was observed between the information contents of EEG signals and walking paths. Our method of analysis can also be used to investigate the relation among other physiological signals of a human and walking paths, which has great benefits in rehabilitation science.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Yumei Wang ◽  
Xiaochuan Zhao ◽  
Shunjiang Xu ◽  
Lulu Yu ◽  
Lan Wang ◽  
...  

Most patients with mild cognitive impairment (MCI) are thought to be in an early stage of Alzheimer’s disease (AD). Resting-state functional magnetic resonance imaging reflects spontaneous brain activity and/or the endogenous/background neurophysiological process of the human brain. Regional homogeneity (ReHo) rapidly maps regional brain activity across the whole brain. In the present study, we used the ReHo index to explore whole brain spontaneous activity pattern in MCI. Our results showed that MCI subjects displayed an increased ReHo index in the paracentral lobe, precuneus, and postcentral and a decreased ReHo index in the medial temporal gyrus and hippocampus. Impairments in the medial temporal gyrus and hippocampus may serve as important markers distinguishing MCI from healthy aging. Moreover, the increased ReHo index observed in the postcentral and paracentral lobes might indicate compensation for the cognitive function losses in individuals with MCI.


2021 ◽  
Vol 12 (1) ◽  
pp. 11
Author(s):  
Takao Yamasaki ◽  
Shuzo Kumagai

Patients show subtle changes in daily behavioral patterns, revealed by traditional assessments (e.g., performance- or questionnaire-based assessments) even in the early stage of Alzheimer’s disease (AD; i.e., the mild cognitive impairment (MCI) stage). An increase in studies on the assessment of daily behavioral changes in patients with MCI and AD using digital technologies (e.g., wearable and nonwearable sensor-based assessment) has been noted in recent years. In addition, more objective, quantitative, and realistic evidence of altered daily behavioral patterns in patients with MCI and AD has been provided by digital technologies rather than traditional assessments. Therefore, this study hypothesized that the assessment of daily behavioral changes with digital technologies can replace or assist traditional assessment methods for early MCI and AD detection. In this review, we focused on research using nonwearable sensor-based in-home assessment. Previous studies on the assessment of behavioral changes in MCI and AD using traditional performance- or questionnaire-based assessments are first described. Next, an overview of previous studies on the assessment of behavioral changes in MCI and AD using nonwearable sensor-based in-home assessment is provided. Finally, the usefulness and problems of nonwearable sensor-based in-home assessment for early MCI and AD detection are discussed. In conclusion, this review stresses that subtle changes in daily behavioral patterns detected by nonwearable sensor-based in-home assessment can be early MCI and AD biomarkers.


2014 ◽  
Vol 16 (1) ◽  
pp. 75-81 ◽  

It has been long established that psychological interventions can markedly alter patients' thinking patterns, beliefs, attitudes, emotional states, and behaviors. Little was known about the neural mechanisms mediating such alterations before the advent of functional neuroimaging techniques. Since the turn of the new millenium, several functional neuroimaging studies have been conducted to tackle this important issue. Some of these studies have explored the neural impact of various forms of psychotherapy in individuals with major depressive disorder. Other neuroimaging studies have investigated the effects of psychological interventions for anxiety disorders. I review these studies in the present article, and discuss the putative neural mechanisms of change in psychotherapy. The findings of these studies suggest that mental and behavioral changes occurring during psychotherapeutic interventions can lead to a normalization of functional brain activity at a global level.


2021 ◽  
Author(s):  
Giovanni Landi ◽  
Maria Rita Lo Monaco ◽  
Enrico Di Stasio ◽  
Diego Ricciardi ◽  
Marcella Solito ◽  
...  

Abstract Background and aims: The need for intimacy and sexual expression is an essential dimension of quality of life. As patients with Parkinson's disease (PD) have to cope with essential changes in their global and sexual functioning, achieving a satisfying intimate and sexual relationship can be challenging. Sexual experience is a complex process that involves a dyadic relationship. In this study, we aimed to characterize the sexual experience of patients with Parkinson's disease and patients' vs caregivers' perceptions. Methods Twenty-seven PD patients and their caregivers were asked to complete the Arizona Sexual Experience Scale (ASEX) anonymously. They were instructed to refer to their sexual behavior over the past year and to consider behavioral changes that lasted for at least four consecutive weeks. Results Our data suggest that when considering sexual perceptions in PD, there is often agreement of judgment between patients and their partners. Overall, they have a rather good sex life, especially in the early stage of the disease, with similar behavior shown by men and women. Conclusions The effect of PD on the sexual and couple relationship challenges healthcare professionals to focus on the needs of both partners and to plan specific interventions in such a way as to prevent the deterioration of the couples' sexual wellbeing.


Stroke ◽  
2013 ◽  
Vol 44 (suppl_1) ◽  
Author(s):  
Mukul Mukherjee ◽  
Wen-Pin Chang ◽  
Ka-Chun Siu ◽  
Pierre Fayad ◽  
Nicholas Stergiou

Augmented visual feedback has been shown to be effective for learning reaching movements in dynamic environments after a stroke. However, the mechanisms behind such changes are not known. In addition, how brain activity changes with age as we learn novel dynamic tasks is also not clear. The purpose of this study was to examine brain activity changes that are observed when healthy younger and older adults and stroke survivors learn reaching movements in dynamic environments using augmented visual feedback. Healthy young and older adults and chronic stroke survivors were randomly assigned to either a control or an experimental group. They all performed reaching movements with the Inmotion2 robotic system (Interactive Motion Tech Inc., MA) using the dominant/affected arm in a velocity-dependent force field. Controls received actual feedback of their movement, while experimental subjects received augmented visual feedback. Electroencephalogram recordings were analyzed to determine Event Related Desynchronization percent (ERD%). The theta, alpha, and beta frequency bands were examined during movement and pre-movement phases. With learning, the absolute power of the frequency bands increased from the baseline to the adaptation condition, which was then washed out when the force field was removed. With age, there was a reduction in ERD% in alpha and beta bands as the motor task was learned. Stroke subjects had a further reduction in the ERD% in comparison to the healthy older adults. In addition, augmented visual feedback led to a significant increase in the ERD% in comparison to controls during the planning and execution stages of the movement. Past studies have shown when novel dynamics are learned, ERD% reduces indicating increased cognitive processing and memory load. We found that with aging, the cognitive processing and memory required for performing the same dynamic task, increased. After a stroke, there was a further increase. However, the utilization of augmented visual feedback may reduce such requirements and lessen the load on higher centers. These results provide mechanistic support for employing augmented visual feedback for stroke rehabilitation specific to reaching movements in dynamic environments.


2021 ◽  
pp. 2150048
Author(s):  
Hamidreza Namazi ◽  
Avinash Menon ◽  
Ondrej Krejcar

Our eyes are always in search of exploring our surrounding environment. The brain controls our eyes’ activities through the nervous system. Hence, analyzing the correlation between the activities of the eyes and brain is an important area of research in vision science. This paper evaluates the coupling between the reactions of the eyes and the brain in response to different moving visual stimuli. Since both eye movements and EEG signals (as the indicator of brain activity) contain information, we employed Shannon entropy to decode the coupling between them. Ten subjects looked at four moving objects (dynamic visual stimuli) with different information contents while we recorded their EEG signals and eye movements. The results demonstrated that the changes in the information contents of eye movements and EEG signals are strongly correlated ([Formula: see text]), which indicates a strong correlation between brain and eye activities. This analysis could be extended to evaluate the correlation between the activities of other organs versus the brain.


Author(s):  
Ignacio Palacios-Huerta

This chapter is concerned with the implications of incentives. It studies an incentive change in a natural setting where both productive and sabotage activities can be directly observed: soccer. The analysis proceeds in four steps. First, it describes the basic behavioral changes that took place after the change to the three-point rule. Second, it uses the control matches in the cup tournament to estimate the effects caused by the change in rewards. Third, it tries to understand the underlying mechanisms through which these changes took place and the reason they neutralized each other in terms of goal scoring by examining the way the behavior of teams changed during the match. Finally, it shows that this change represented undesirable sabotage rather than, say, desirable greater intensity in the games.


Sign in / Sign up

Export Citation Format

Share Document