scholarly journals Analysis of Electromagnetic Information Leakage Based on Cryptographic Integrated Circuits

Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1508
Author(s):  
Shaofei Sun ◽  
Hongxin Zhang ◽  
Xiaotong Cui ◽  
Qiang Li ◽  
Liang Dong ◽  
...  

Cryptographic algorithm is the most commonly used method of information security protection for many devices. The secret key of cryptographic algorithm is usually stored in these devices’ registers. In this paper, we propose an electromagnetic information leakage model to investigate the relationship between the electromagnetic leakage signal and the secret key. The registers are considered as electric dipole models to illustrate the source of the electromagnetic leakage. The equivalent circuit of the magnetic field probe is developed to bridge the output voltage and the electromagnetic leakage signal. Combining them, the electromagnetic information leakage model’s function relationship can be established. Besides, an electromagnetic leakage model based on multiple linear regression is proposed to recover the secret key and the model’s effectiveness is evaluated by guess entropy. Near field tests are conducted in an unshielded ordinary indoor environment to investigate the electromagnetic side-channel information leakage. The experiment result shows the correctness of the proposed electromagnetic leakage model and it can be used to recover the secret key of the cryptographic algorithm.

10.29007/r2sc ◽  
2019 ◽  
Author(s):  
Osnat Keren ◽  
Ilia Polian

Cryptographic hardware primitives must be protected against fault-injection attacks. Security-oriented error-detecting codes provide (probabilistic) guarantees for detection of maliciously injected faults even under assumption of a sophisticated attacker with access to powerful equipment.In this paper, we revisit the earlier finding that error-detection infrastructure may increase the undesired information leakage. We formalize the information leakage from the checker response by means of mutual information. We apply our analysis to the best security-oriented robust codes known today. We prove that the probability of an undetected attack is exponentially smaller than the entropy loss due to information leak from the checker. This means that an attack will be detected far before the attacker will gain significant information. Given a bound for acceptable information leakage (e.g., 0.5 bits of a 128-bit secret key), our analysis allows the designer to easily choose the number of redundant bits required to stay below that bound. The obtained results extend our knowledge about the relationship between detection capabilities of codes and information leakage due to them.


2021 ◽  
Vol 10 (5) ◽  
pp. 311
Author(s):  
Xiaolong Wang ◽  
Haowen Yan ◽  
Liming Zhang

Encryption of vector maps, used for copyright protection, is of importance in the community of geographic information sciences. However, some studies adopt one-to-one mapping to scramble vertices and permutate the coordinates one by one according to the coordinate position in a plain map. An attacker can easily obtain the key values by analyzing the relationship between the cipher vector map and the plain vector map, which will lead to the ineffectiveness of the scrambling operation. To solve the problem, a vector map encryption algorithm based on a double random position permutation strategy is proposed in this paper. First, the secret key sequence is generated using a four-dimensional quadratic autonomous hyperchaotic system. Then, all coordinates of the vector map are encrypted using the strategy of double random position permutation. Lastly, the encrypted coordinates are reorganized according to the vector map structure to obtain the cipher map. Experimental results show that: (1) one-to-one mapping between the plain vector map and cipher vector map is prevented from happening; (2) scrambling encryption between different map objects is achieved; (3) hackers cannot obtain the permutation key value by analyzing the pairs of the plain map and cipher map.


2017 ◽  
Vol 14 (135) ◽  
pp. 20170484 ◽  
Author(s):  
Matthew D. B. Jackson ◽  
Salva Duran-Nebreda ◽  
George W. Bassel

Multicellularity and cellular cooperation confer novel functions on organs following a structure–function relationship. How regulated cell migration, division and differentiation events generate cellular arrangements has been investigated, providing insight into the regulation of genetically encoded patterning processes. Much less is known about the higher-order properties of cellular organization within organs, and how their functional coordination through global spatial relations shape and constrain organ function. Key questions to be addressed include: why are cells organized in the way they are? What is the significance of the patterns of cellular organization selected for by evolution? What other configurations are possible? These may be addressed through a combination of global cellular interaction mapping and network science to uncover the relationship between organ structure and function. Using this approach, global cellular organization can be discretized and analysed, providing a quantitative framework to explore developmental processes. Each of the local and global properties of integrated multicellular systems can be analysed and compared across different tissues and models in discrete terms. Advances in high-resolution microscopy and image analysis continue to make cellular interaction mapping possible in an increasing variety of biological systems and tissues, broadening the further potential application of this approach. Understanding the higher-order properties of complex cellular assemblies provides the opportunity to explore the evolution and constraints of cell organization, establishing structure–function relationships that can guide future organ design.


1974 ◽  
Vol 96 (3) ◽  
pp. 722-728
Author(s):  
Rudolph E. Croteau ◽  
Herman E. Sheets

Underwater plate vibration and its associated noise are of interest for the analysis of ship structures, propeller blades, and other areas of underwater acoustics. In order to analyze the relationship between a plate vibrating underwater and the acoustic pressure in the near-field, optical interferometric holography, using a blue-green laser beam, was used to determine surface displacement for the vibrating plate, which was excited through a fluid-coupled system. Acoustic measurements of the same source were made in a water tower concurrently with the holography and later at a precision acoustic testing facility. This method permits prediction of underwater plate modal frequencies and shapes with high accuracy.


Author(s):  
Ali Alaeldine ◽  
Thomas Ordas ◽  
Richard Perdriau ◽  
Philippe Maurine ◽  
Mohamed Ramdani ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3746 ◽  
Author(s):  
Antonio Lazaro ◽  
Ramon Villarino ◽  
David Girbau

In this article, an overview of recent advances in the field of battery-less near-field communication (NFC) sensors is provided, along with a brief comparison of other short-range radio-frequency identification (RFID) technologies. After reviewing power transfer using NFC, recommendations are made for the practical design of NFC-based tags and NFC readers. A list of commercial NFC integrated circuits with energy-harvesting capabilities is also provided. Finally, a survey of the state of the art in NFC-based sensors is presented, which demonstrates that a wide range of sensors (both chemical and physical) can be used with this technology. Particular interest arose in wearable sensors and cold-chain traceability applications. The availability of low-cost devices and the incorporation of NFC readers into most current mobile phones make NFC technology key to the development of green Internet of Things (IoT) applications.


2020 ◽  
Author(s):  
Han-Ha Chai ◽  
Young Ran Kim ◽  
Jun-Sang Ham ◽  
Tae-Hun Kim ◽  
Dajeong Lim

Abstract Background: The OppA receptor as a ATP-binding cassette (ABC) transporter plays key roles in protecting host organism and transport nutrients across the intestine by the oligopeptide transporter from symbiotic bacteria directs maturation of the host immune system. Among lactic acid bacteria, Bifidobacterium longum KACC91563, isolated from fecal samples of healthy Korean neonates, has the capability to alleviate food allergy effects. The extracellular OppA receptor from gram-positive Bifidobacterium longum KACC91563 translocate nutrients-peptides from the outside environment of intestinal tract to the inside of the symbiotic cell, as a peptide importer. Hence, it was attempting to explicate the relationship between the substrate’s specificity from the OppA importer and the probiotic effects of B. logum KACC91563 in the host intestine. The probiotic effects of B. logum KACC91563 were attributed to the enhancement of the epithelial barrier by several different strain sepcific ways to prevent the strong adhesion of pathogens. The specialized structure-function relationship from the OppA importer could provide the abstract of substrate specificity into unique immunological properties of that the host organism.Results: In the study, we characterized the extracellular OppA importer from B. longum KACC91563 of intestinal microbiome by various protein structure-based modelings in silico. Structural characterization by conserved 5 patches and 4 functional motifs from specific trace residues of the OppA importer. The hydrate surface of the binding site had been decipted by specific trace residues of the OppA that trace residues of Thr58, Lys185, Trp443, and Tyr447, which were characterized in highly exposed hydrophobic binding pocket by its aggregation prones. Therefore, the spatial aggregation propensity in the binding site of the extracellular OppA importer plays a vital role in the specific interaction determinant for peptide binding. In addition, alanine mutation energy values allowed for the virtual determination of the relationships between the energy effects of the peptide binding site mutation on the transporter structural stability, the peptide binding affinity, and the transporter-related peptide substrate selectivity from OppA importer. In particular, distinctive seven pharmacophoric features comprised of two H-bonding donor(P1), three H-bonding acceptor(P8), and two hydrophobic points (P5 and P8) matched the the OppA receptor-peptide ligand interactions within their binding pocket structure. There are distinct interactions to fix the positions of the N(P1) and C(P8) termini of the complex of OppA-peptide from B. longum KACC91563 such as side chain-specific interactions with the OppA, compared to that of the Lactococcus latis (L. lactics) OppA.Conclusions: The specialized structure-function relationship from the OppA import could provide the abstract of substrate specificity into unique immunological properties of the host organism by stucutre-based molecular modeling. In the current study, we attempted explication of the relationship between the substrate’s specificity from the OppA importer and the probiotic effects of B. longum KACC91563 in the host intestine based on the structure-function perspectives of the OppA importer. Moreover, functional characterization of solute-binding proteins (such as 15 cell wall proteins and 20 extracellular proteins) on the B. longum KACC91563 genome will lead to insight of key switch for substate’s metabolism into reprogramming immune responses in the host intestine.


Behaviour ◽  
2016 ◽  
Vol 153 (13-14) ◽  
pp. 1777-1793 ◽  
Author(s):  
Evan E. Byrnes ◽  
Catarina Vila Pouca ◽  
Sherrie L. Chambers ◽  
Culum Brown

The field of animal personality has received considerable attention in past decades, yet few studies have examined personality in the wild. This study investigated docility, a measure of boldness, in two Port Jackson shark (Heterodontus portusjacksoni) populations using field tests, and if laterality differences explained docility levels. We developed a struggle test as an assay for docility, which is particularly amenable to field studies. The struggle test was effective, and repeatable inter-individual docility differences were observed. Sex, but not population, influenced docility scores, with male sharks being less docile than females. This difference is likely due to the contrasting role each sex plays during mating. We also found individualized lateralization. However, no individual-level relationship between lateralization and docility was detected. Despite reported links between laterality and some personality traits, the relationship between laterality and boldness remains inconclusive in sharks. Further studies will prove essential to clarify the mechanisms behind personality traits in vertebrates.


Sign in / Sign up

Export Citation Format

Share Document