scholarly journals A BIM-IFC Technical Solution for 3D Crowdsourced Cadastral Surveys Based on LADM

Earth ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 605-621
Author(s):  
Maria Gkeli ◽  
Chryssy Potsiou ◽  
Sofia Soile ◽  
Giorgos Vathiotis ◽  
Maria-Eleni Cravariti

In most countries, three-dimensional (3D) property units are registered utilizing two-dimensional (2D) documentation and textual description. This approach has several limitations as it is unable to represent the actual extent of complicated 3D property units in space. As traditional procedures often lead to increased costs and long delays in 2D cadastral surveying, a fast, cost-effective, and reliable solution is needed to cope with the remaining global cadastral surveying needs. Crowdsourcing has claimed a critical role as a reliable methodology with huge potential regarding the realization of 2D and 3D cadastral registration in both an affordable and a timely manner. Many large modern constructions are now planned and constructed based on BIM technology all over the world. The utilization of 3D digital models, such as building information models (BIMs), and the establishment of a connection with the international standard of the Land Administration Domain Model (LADM) could be a solution for the rapid integration of these units into a 3D crowdsourced cadaster with a better representation of the cadastral boundaries of these units, a detailed visualization of complex infrastructures, and an enhancement in the interoperability between different parties and organizations. In this paper, the potential linkage between the BIM, the LADM, and crowdsourcing techniques is investigated in order to provide an effective technical solution for the integration of large new constructions into 3D crowdsourced cadastral surveys. The proposed framework is tested on a building block in Athens, Greece. The potential, perspectives, and reliability of such an implementation are assessed and discussed.

Author(s):  
D. Guler ◽  
T. Yomralioglu

Abstract. Owing to the increasing existence of multistorey buildings and infrastructures in the built environment, there is a need for three-dimensional (3D) land administration systems (LAS). Regarding this, condominium rights in real-estate properties are needed to be represented as 3D for preventing misinterpretations with regards to who is responsible for or has ownership in which parts of the buildings. Digitalizing the public services appears in current strategies of governments and administrations since it contributes to transparency, speed, and accurateness in the processes. Building permitting that contains obtaining the occupancy permit is a vital one of these public services. With the even-increasing adaptation of Building Information Modelling (BIM), a whole raft of Building Information Models (BIMs) are created to use in digital building permitting. Thus, a significant opportunity for 3D delineation of condominium rights comes out of the reuse of these BIMs, especially their Industry Foundation Classes (IFC) data. In this sense, this paper puts forward an approach that includes developing the conceptual model to depict condominium rights and linking that model with the IFC schema. The applicability of the approach is demonstrated by using a floor of a simple building. The study shows that IFC-based representation of condominium rights can be beneficial for the transition to 3D LAS in Turkey.


2021 ◽  
Vol 11 (24) ◽  
pp. 11899
Author(s):  
Ángela Moreno Bazán ◽  
Marcos García Alberti ◽  
Antonio A. Arcos Álvarez ◽  
Rubén Muñoz Pavón ◽  
Adela González Barbado

Building Information Modelling (BIM) is modifying the workflow of the construction field, not only in design and construction stages but also for the management of the facilities. Most advances in academics and industry have focussed on the use of BIM for building. However, the possibilities of the use of three-dimensional information models for the construction and management of public works and civil engineering infrastructure projects (known as CIM) are still a matter of concern, being complex though offering a wider number of possibilities when compared with regular building industry. Moreover, the construction process in comparison with its lifespan represent only a small part of the investments for the use of public works. With this background, the possibilities based on BIM for the maintenance and rehabilitation of public heritage (HCIM) can greatly improve traditional management capabilities. Making best use of BIM and digitalisation for the management of public heritage (HCIM) requires creating tools for documentation, registering and data management to permit the adequate information transfer between the actors involved. Such actors may be experts or not and hold or not skills to use BIM tools. This study proposes the creation of a database to support the regular inspection during the lifespan of the infrastructure and connect it with the three-dimensional information model, serving the latter as an information repository of the whole life of the infrastructure. Such data include damage and causes as well as a description of the pathology and this information is referred to each element, showing all the historic measures taken. In addition, quantification and quotation of the repairs needed can be obtained. Lastly, the study has applied this methodology in Algeciras Market Hall, the notorious rationalist building designed by the engineer Eduardo Torroja and built in 1935. The results shown in this study can be of great interest for both researchers and practice, with an adaptation and innovation of the BIM and HCIM possibilities.


2018 ◽  
Vol 7 (9) ◽  
pp. 355 ◽  
Author(s):  
Rudi Stouffs ◽  
Helga Tauscher ◽  
Filip Biljecki

The Singapore Government has embarked on a project to establish a three-dimensional city model and collaborative data platform for Singapore. The research herein contributes to this endeavour by developing a methodology and algorithms to automate the conversion of Building Information Models (BIM), in the Industry Foundation Classes (IFC) data format, into CityGML building models, capturing both geometric and semantic information as available in the BIM models, and including exterior as well as interior structures. We adopt a Triple Graph Grammar (TGG) to formally relate IFC and CityGML, both semantically and geometrically, and to transform a building information model, expressed as an IFC object graph, into a city model expressed as a CityGML object graph. The work pipeline includes extending the CityGML data model with an Application Domain Extension (ADE), which allows capturing information from IFC that is relevant in the geospatial context but at the same time not supported by CityGML in its standard form. In this paper, we elaborate on the triple graph grammar approach and the motivation and roadmap for the development of the ADE. While a fully complete and lossless conversion may never be achieved, this paper suggests that both a TGG and an ADE are natural choices for supporting the conversion between IFC and CityGML.


2020 ◽  
Vol 10 (10) ◽  
pp. 3649
Author(s):  
Tae Ho Kwon ◽  
Sang I. Park ◽  
Young-Hoon Jang ◽  
Sang-Ho Lee

Building information modeling (BIM) has been widely applied in conjunction with the industry foundation class (IFC) for buildings and infrastructure such as railways. However, a limitation of the BIM technology presents limitations that make designing the three-dimensional (3D) alignment-based information models difficult. Thus, the time and effort required to create a railway track model are increased, while the reliability of the model is reduced. In this study, we propose a methodology for developing an alignment-based independent railway track model and extended IFC models containing railway alignment information. The developed algorithm using BIM software tools allows for a discontinuous structure to be designed. The 3D alignment information connects different BIM software tools, and the classification system and IFC schema for expressing railway tracks are extended. Moreover, the classification system is fundamental for assigning IFC entities to railway components. Spatial and hierarchical entities were created through a developed user interface. The proposed methodology was implemented in an actual railway track test. The possibility of managing IFC-based railway track information, including its 3D alignment information, was confirmed. The proposed methodology can reduce the modeling time and can be extended to other alignment-based structures, such as roads.


Proceedings ◽  
2021 ◽  
Vol 65 (1) ◽  
pp. 22
Author(s):  
Giacomo Bergonzoni ◽  
Valentina Marino ◽  
Mohamed Elagiry ◽  
Andrea Costa

Using the semantic information available in building information models (BIM) during the whole project lifecycle enables faster, safer, and efficient construction, cost-effective operation and maintenance, and cost-effective eventual decommissioning. This paper aims to provide a systematic review of how sustainability rating systems can exploit the BIM approach for an easy collection of data and information and assessment of indicators to reach building certification. This paper is a part of the BIM4REN project, which is dedicated to developing an open-access platform of tools for the digitalization of the building renovation process specifically tailored for SMEs (Small and medium-sized enterprises).


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Jiaming Wu ◽  
Jian Chen ◽  
Guoliang Chen ◽  
Zhe Wu ◽  
Yu Zhong ◽  
...  

With the rapid development of infrastructure construction, geotechnical engineering has always been worthy of attention due to its complexity and diversity. Accelerating the informatization of geotechnical engineering will contribute to the project management, but the information contained in geotechnical engineering cannot be well integrated because of the lack of unified data standards. Building Information Modeling (BIM) has been considered as an effective technology to manage information, and Industry Foundation Classes (IFC) in BIM serves as a neutral and open standard for the exchange of information. However, it was found that BIM cannot express the information of some structure objects and geological objects well during the construction process of geotechnical engineering. Combined with the characteristics of geotechnical engineering, taking advantage of the good extensibility of IFC, this paper proposes a “Built-In Generation Schema” for geotechnical structure models and a “Plug-In Extension Schema” for three-dimensional (3D) geological models, ultimately forming the basic data system of geotechnical engineering information models based on IFC. Applying extended IFC to the modeling process, the BIM-based modeling method of geotechnical models is proposed. In addition, an IFC-based platform is developed to integrate geological models and structure models for further displaying and analyzing of geotechnical engineering models. The work in this paper provides a feasible way and technical support for promoting the integration and sharing of geotechnical engineering information and enhancing the multiprofessional collaborative work.


2018 ◽  
Vol 7 (10) ◽  
pp. 393 ◽  
Author(s):  
Yiqun Chen ◽  
Erfan Shooraj ◽  
Abbas Rajabifard ◽  
Soheil Sabri

The 3D Tiles specification, created by Cesium, is designed for streaming massive heterogeneous three-dimensional (3D) geospatial datasets online using WebGL technology. The program has prevailed in the WebGIS community due to its ability to visualise, interact, and style 3D objects for various scenarios, such as 3D cities, indoor environments, and point clouds. It offers a new opportunity to integrate Building Information Models (BIM) in the Industry Foundation Classes (IFC) data format with existing geospatial data in a 3D WebGIS platform with open-source implementation. As no open-source solution for converting IFC models into 3D Tiles for online visualization had yet been found, this paper explores feasible approaches and integrates a range of tools and libraries as an open-source solution for the community.


Author(s):  
Thomas H. Kolbe ◽  
Andreas Donaubauer

AbstractSemantic 3D city modeling and building information modeling (BIM) are methods for modeling, creating, and analyzing three-dimensional representations of physical objects of the environment. Digital modeling of the built environment has been approached from at least four different domains: computer graphics and gaming, planning and construction, urban simulation, and geomatics. This chapter introduces the similarities and differences of 3D models from these disciplines with regard to aspects like scale, level of detail, representation of spatial and semantic characteristics, and appearance. Exemplified by the international standards CityGML and Industry Foundation Classes (IFC), information models from semantic 3D city modeling and BIM and their corresponding modeling approaches are explored, and the relationships between them are discussed. Based on use cases from infrastructure planning, approaches for integrating information from semantic 3D city modeling and BIM, such as semantic transformation between CityGML and IFC, are described. Furthermore, the role of semantic 3D city modeling and BIM for recent developments in urban informatics, such as smart cities and digital twins, is investigated and illustrated by real-world examples.


Sign in / Sign up

Export Citation Format

Share Document