scholarly journals Semantic 3D City Modeling and BIM

Author(s):  
Thomas H. Kolbe ◽  
Andreas Donaubauer

AbstractSemantic 3D city modeling and building information modeling (BIM) are methods for modeling, creating, and analyzing three-dimensional representations of physical objects of the environment. Digital modeling of the built environment has been approached from at least four different domains: computer graphics and gaming, planning and construction, urban simulation, and geomatics. This chapter introduces the similarities and differences of 3D models from these disciplines with regard to aspects like scale, level of detail, representation of spatial and semantic characteristics, and appearance. Exemplified by the international standards CityGML and Industry Foundation Classes (IFC), information models from semantic 3D city modeling and BIM and their corresponding modeling approaches are explored, and the relationships between them are discussed. Based on use cases from infrastructure planning, approaches for integrating information from semantic 3D city modeling and BIM, such as semantic transformation between CityGML and IFC, are described. Furthermore, the role of semantic 3D city modeling and BIM for recent developments in urban informatics, such as smart cities and digital twins, is investigated and illustrated by real-world examples.

2020 ◽  
Vol 12 (17) ◽  
pp. 6713
Author(s):  
Youngsoo Byun ◽  
Bong-Soo Sohn

Building Information Modeling (BIM) refers to 3D-based digital modeling of buildings and infrastructure for efficient design, construction, and management. Governments have recognized and encouraged BIM as a primary method for enabling advanced construction technologies. However, BIM is not universally employed in industries, and most designers still use Computer-Aided Design (CAD) drawings, which have been used for several decades. This is because the initial costs for setting up a BIM work environment and the maintenance costs involved in using BIM software are substantially high. With this motivation, we propose a novel software system that automatically generates BIM models from two-dimensional (2D) CAD drawings. This is highly significant because only 2D CAD drawings are available for most of the existing buildings. Notably, such buildings can benefit from the BIM technology using our low-cost conversion system. One of the common problems in existing methods is possible loss of information that may occur during the process of conversion from CAD to BIM because they mainly focus on creating 3D geometric models for BIM by using only floor plans. The proposed method has an advantage of generating BIM that contains property information in addition to the 3D models by analyzing floor plans and other member lists in the input design drawings together. Experimental results show that our method can quickly and accurately generate BIM models from 2D CAD drawings.


Author(s):  
F. Capocchiano ◽  
R. Ravanelli ◽  
M. Crespi

Within the construction sector, Building Information Models (BIMs) are more and more used thanks to the several benefits that they offer in the design of new buildings and the management of the existing ones. Frequently, however, BIMs are not available for already built constructions, but, at the same time, the range camera technology provides nowadays a cheap, intuitive and effective tool for automatically collecting the 3D geometry of indoor environments. It is thus essential to find new strategies, able to perform the first step of the scan to BIM process, by extracting the geometrical information contained in the 3D models that are so easily collected through the range cameras.<br><br> In this work, a new algorithm to extract planimetries from the 3D models of rooms acquired by means of a range camera is therefore presented. The algorithm was tested on two rooms, characterized by different shapes and dimensions, whose 3D models were captured with the Occipital Structure Sensor<sup>TM</sup>. The preliminary results are promising: the developed algorithm is able to model effectively the 2D shape of the investigated rooms, with an accuracy level comprised in the range of 5 - 10 cm. It can be potentially used by non-expert users in the first step of the BIM generation, when the building geometry is reconstructed, for collecting crowdsourced indoor information in the frame of BIMs Volunteered Geographic Information (VGI) generation.


2019 ◽  
Vol 4 (1) ◽  
pp. 8 ◽  
Author(s):  
José Neves ◽  
Zita Sampaio ◽  
Manuel Vilela

Building Information Modeling (BIM) is an Industry 4.0 methodology that is increasingly used in the domain of Architecture, Engineering, and Construction (AEC). BIM emerges as a new methodology, one that is more collaborative and based on parametric three-Dimensional (3D) models, centralizing different types of information of a geometric, physical, and economic nature. The purpose of this paper is to analyze the application of the BIM methodology to a rail track rehabilitation case study using a geotextile and geogrid in the ballast layer base. The creation of the 3D and 4D BIM models was performed using various BIM-based tools, which made it possible to achieve the spatial and parametric representation of the rail track and the simulation of the main construction tasks. A new BIM object pertaining to the rail track was created. This paper describes the procedures applied in achieving the BIM models, the limitations involved, and the interoperability between the BIM tools. Additionally, the potential for information extraction with respect to the infrastructure design, construction, and operation, e.g., planning and scheduling, quantities, graphic outputs, and track geometry quality, was demonstrated. It was concluded that the BIM methodology was viable and could be implemented with benefits, despite certain difficulties and limitations, which emphasize the need for further developments.


Author(s):  
E. S. Soonwald ◽  
A. E. Wojnarowski ◽  
S. G. Tikhonov ◽  
O. V. Artemeva ◽  
S. V. Tyurin

<p><strong>Abstract.</strong> Development and implementation of information models of spatial objects affect broadest application areas currently. Building Information Models (BIMs) are now becoming extremely popular. These models are able to describe a great number characteristics of building or engineering construction, including physical and functional properties, economic parameters, visual parameters, etc. BIM use is introduced currently as the mandatory aspect of building life cycle management, from design and construction to demolition. However, implementation of the BIM concept into the reconstruction, restoration and conservation of historical and cultural heritage remains the least developed domain. Therefore, research and development activities concerned with HBIMs (Historical Building Information Models) are particularly relevant. Saint Petersburg being the second largest Russian city has a huge number of architectural monuments, while industrial architecture composes a special category of these monuments. We provided a number of research and development activities devoted to the 3D information modelling of industrial architectural monuments located in St. Petersburg. Context of these works was established by the reconstruction and adaptation of these monuments to modern needs. 3D models of buildings were produced basing on results of the laser scanning and photogrammetric survey. Basing on our work, we have formalized main approaches to design and implementation of Building Information Models of the industrial architectural monuments.</p>


Author(s):  
J. Suziedelyte Visockiene ◽  
E. Tumeliene

<p><strong>Abstract.</strong> The implementation of Building Information Modelling (BIM) in each project, which is planned, have a design and construction stages. In the construction stage the objects are modelled by architects, engineers, and surveyors. Modelling process allowed to construct a BIM, which replaces two-dimensional (2D) building information into a three-dimensional (3D). Noticed that 3D BIM created by surveyors is not the same as 3D BIM, which is created by architects. Therefore, the purpose of this study is to identify the differences of the created 2D draftings made by 3D models between surveyors and architect’s. The surveyors make their model by using Unnamed Aerial Vehicle (UAV) system: Airborne Drone Data and Data photogrammetric processing technology. The 3D models accuracy is assessed by UAV images processing. The 3D information should be used to calculate façade geometry, volume, distances, contours, which are in the shadowed side of the house, and create 2D façade draftings. Traditionally, architects used 2D building’s façade draftings for pre-design in Construction Projects (CP). 3D architectural model is created by using structural 2D draftings created with Autodesk software. The architectural 3D model is more convenient for the general design and the visual view, it is easily to evaluate the impact of the changes that will be made. The 3D architectural model helps to finish a project at a low cost and also to evaluate the effect of the changes made. The 3D model from surveys measurements shows real view of an object (with deformations), meanwhile the 3D model from architects is a corrected image. Discrepancies between surveyors and architect’s 2D models made by 3D virtual reality (VR) are analysed in this article.</p>


Author(s):  
Afshin Hatami ◽  
Alex Mabrich

<p>Building information modeling (BIM) is a new technology in the bridge construction industry. 3D models can provide perfect numerical expression of drawings from design results. 3D information models for bridge structures improve design quality in terms of accurate drawings, constructability, and collaboration. However, there are lots of challenges to apply these techniques to actual bridge projects. For instance, bridge engineers are facing the challenge of making the vast information generated by their structural model useful for professionals further down the line in the lifecycle of the bridge. Contractors and inspectors require a 3D model which is created after the design process to add extra information related to activities and store that information in the same model. In this paper, technologies available to generate, manage, and enrich the bridge 3D model with intelligent information from construction to design and inspection are proposed.</p>


2020 ◽  
Vol 10 (10) ◽  
pp. 3649
Author(s):  
Tae Ho Kwon ◽  
Sang I. Park ◽  
Young-Hoon Jang ◽  
Sang-Ho Lee

Building information modeling (BIM) has been widely applied in conjunction with the industry foundation class (IFC) for buildings and infrastructure such as railways. However, a limitation of the BIM technology presents limitations that make designing the three-dimensional (3D) alignment-based information models difficult. Thus, the time and effort required to create a railway track model are increased, while the reliability of the model is reduced. In this study, we propose a methodology for developing an alignment-based independent railway track model and extended IFC models containing railway alignment information. The developed algorithm using BIM software tools allows for a discontinuous structure to be designed. The 3D alignment information connects different BIM software tools, and the classification system and IFC schema for expressing railway tracks are extended. Moreover, the classification system is fundamental for assigning IFC entities to railway components. Spatial and hierarchical entities were created through a developed user interface. The proposed methodology was implemented in an actual railway track test. The possibility of managing IFC-based railway track information, including its 3D alignment information, was confirmed. The proposed methodology can reduce the modeling time and can be extended to other alignment-based structures, such as roads.


Author(s):  
Bonsang Koo ◽  
Raekyu Jung ◽  
Youngsu Yu ◽  
Inhan Kim

Abstract Data interoperability between domain-specific applications is a key prerequisite for building information modeling (BIM) to solidify its position as a central medium for collaboration and information sharing in the construction industry. The Industry Foundation Classes (IFC) provides an open and neutral data format to standardize data exchanges in BIM, but is often exposed to data loss and misclassifications. Concretely, errors in mappings between BIM elements and IFC entities may occur due to manual omissions or the lack of awareness of the IFC schema itself, which is broadly defined and highly complex. This study explored the use of geometric deep learning models to classify infrastructure BIM elements, with the ultimate goal of automating the prechecking of BIM-to-IFC mappings. Two models with proven classification performance, Multi-View Convolutional Neural Network (MVCNN) and PointNet, were trained and tested to classify 10 types of commonly used BIM elements in road infrastructure, using a dataset of 1496 3D models. Results revealed MVCNN as the superior model with ACC and F1 score values of 0.98 and 0.98, compared with PointNet's corresponding values of 0.83 and 0.87, respectively. MVCNN, which employs multiple images to learn the features of a 3D artifact, was able to discern subtle differences in their shapes and geometry. PointNet seems to lose the granularity of the shapes, as it uses points partially selected from point clouds.


2018 ◽  
Vol 9 (19) ◽  
pp. 1 ◽  
Author(s):  
Andrea Adami ◽  
Francesco Fassi ◽  
Luigi Fregonese ◽  
Mario Piana

<p>This article aims to critically examine the entire methodology of very large scale (1:1) surveying and documentation of mosaic surfaces. The term ‘survey’ should be read in its broadest and most complete and sense, including the phases of measurement and data processing as well as management and use of these data for the purposes of preservation and maintenance. The case study presented here took place at St Mark’s Basilica (<em>Basilica di San Marco</em>), in Venice, where mosaic flooring, wall and vault decorations have been surveyed on two separate occasions. These two experiences shared a common goal (a full-scale survey of the mosaic decorations) but differed in terms of the methodologies used, chiefly due to the technological developments of recent years. All this, therefore, lends itself to a methodological reflection and critique of the ways in which surveying technology has evolved over time. It enables to conduct surveys that would, just a few years ago, have been inconceivable due to their size and complexity. This article describes in detail current surveying processes, which includes the use of a multi-scale “image-based” approach, “re-topology” methods such as non-uniform rational B-spline (NURBS) and a tailor-made Building Information Modeling (BIM) system. This system allows the direct use of a three-dimensional (3D) model of the Basilica within the maintenance process of the monument itself with the options to georeferencing information, extract basic metric data and catalogue all its mosaics.</p><p><strong>Highlights:</strong></p><ul><li><p>Modern digital photogrammetric techniques enable the acquisition of very complex objects, not only in terms of form but also in terms of material.</p></li><li><p>To obtain high resolution orthophotos, it is necessary to accurately take care of all the stages of the process: photographic acquisition, surveying, modelling and orthographic reprojection.</p></li><li><p>High resolution images and detailed 3D models can benefit from a complex BIM system for the management of all data.</p></li></ul>


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Jiaming Wu ◽  
Jian Chen ◽  
Guoliang Chen ◽  
Zhe Wu ◽  
Yu Zhong ◽  
...  

With the rapid development of infrastructure construction, geotechnical engineering has always been worthy of attention due to its complexity and diversity. Accelerating the informatization of geotechnical engineering will contribute to the project management, but the information contained in geotechnical engineering cannot be well integrated because of the lack of unified data standards. Building Information Modeling (BIM) has been considered as an effective technology to manage information, and Industry Foundation Classes (IFC) in BIM serves as a neutral and open standard for the exchange of information. However, it was found that BIM cannot express the information of some structure objects and geological objects well during the construction process of geotechnical engineering. Combined with the characteristics of geotechnical engineering, taking advantage of the good extensibility of IFC, this paper proposes a “Built-In Generation Schema” for geotechnical structure models and a “Plug-In Extension Schema” for three-dimensional (3D) geological models, ultimately forming the basic data system of geotechnical engineering information models based on IFC. Applying extended IFC to the modeling process, the BIM-based modeling method of geotechnical models is proposed. In addition, an IFC-based platform is developed to integrate geological models and structure models for further displaying and analyzing of geotechnical engineering models. The work in this paper provides a feasible way and technical support for promoting the integration and sharing of geotechnical engineering information and enhancing the multiprofessional collaborative work.


Sign in / Sign up

Export Citation Format

Share Document