scholarly journals Thermophysical Characterization of Two DyethylMethylAmmonium Ionic Liquids

Proceedings ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 29
Author(s):  
◽  
◽  
◽  
◽  
◽  
...  

Density (ρ), speed of sound (U), and the derived magnitudes of two diethylmethylammoniumionic liquids (ILs) against temperature have been studied in this work. The chosen ILs were diethylmethylammonium trifluoromethanesulfonate [C2C2C1N][OTf] and diethylmethylammonium methanesulfonate [C2C2C1N][MeSO3]. In order to analyze the influence of water content, saturated and dried samples of these ILs were studied. The ILs were dried using a vacuum pump, and the saturation level (28% and 6% in weight for [C2C2C1N][MeSO3] and [C2C2C1N][OTf], respectively) was achieved by keeping the ILs in an open bottle at ambient temperature. Direct measurements of density and speed of sound were taken with an Anton Paar DSA 5000. Linear equations were used to express the correlation of both properties with temperature, and the thermal expansion coefficient, αp, and the adiabatic bulk modulus constant, KS, have been also obtained. Additionally, results were compared with previous literature data in order to have a deeper understanding of the liquid properties and detect possible anomalous behaviors. The effect of water content is different on both properties. Thus, the density of the samples slightly increases when water is removed, whereas the opposite behavior was found with regard to the speed of sound, which decreased when the water content was completely removed.

2019 ◽  
Vol 43 ◽  
Author(s):  
Monna Lysa Teixeira Santana ◽  
Geila Santos Carvalho ◽  
Luiz Roberto Guimarães Guilherme ◽  
Nilton Curi ◽  
Bruno Teixeira Ribeiro

ABSTRACT Portable X-ray fluorescence (pXRF) analysis can be considered one of the main recent advances for chemical characterization of earth materials. The water content of the samples can affect the pXRF performance. As a novelty, we aimed to establish relationships (linear regression) between the effect of water content on pXRF results and atomic number (Z) of the elements. Three certified reference materials (CRM) were investigated: OREAS 100a, OREAS 101a, and OREAS 101b. These materials were saturated (0.68 g g-1) with distilled water and left to air-dry naturally. During the drying, the elemental concentrations (C) were determined at different water contents using a pXRF spectrometer. For each water content, the ratio Cwet/Cdry was determined and plotted against the water content. The attenuation coefficient (σ) was also determined. High σ values mean more influence of water content upon measurement element concentration. The obtained recovery rates allowed a qualitative determination. The concentration for the most elements reduced linearly with increasing water content. A predictable behavior of the water content on pXRF results as function of atomic number was not found. Elements identified by Lα spectral line with highest Z were more impacted by water content than elements identified by Kα line with lowest Z. Ti, Cr and Fe was not significantly influenced by water content, and Sr was the most impacted. Our findings contribute to decision-making before characterization earth materials via pXRF, obliging the use of dry samples for determination of impacted elements or by using moisture-corrected data.


Author(s):  
Normane Mirele Chaves da Silva ◽  
Renata Cristina Ferreira Bonomo ◽  
Luciano Brito Rodrigues ◽  
Modesto Antonio Chaves ◽  
Rafael da Costa Ihéu Fontan ◽  
...  

The influence of temperature and water content on thermophysical properties (density, thermal diffusivity, thermal conductivity and specific heat) of genipap (Genipa americana, L) pulp at medium maturity were studied. The thermophysical properties were determined at concentrations between 6.0% m/m and 24.0% m/m of water content and temperatures range of 5 to 80°C. The density decreased with increase in temperature and water content, while the thermal diffusivity and conductivity increased as temperature and water content increased. The specific heat decreased with the moisture content. Empirical models were fitted to the experimental data for each property and the accuracy of those models was checked.


2017 ◽  
Vol 8 (2) ◽  
pp. 1130 ◽  
Author(s):  
Soogeun Kim ◽  
Kyung Min Byun ◽  
Soo Yeol Lee

Author(s):  
J. Cooper ◽  
O. Popoola ◽  
W. M. Kriven

Nickel sulfide inclusions have been implicated in the spontaneous fracture of large windows of tempered plate glass. Two alternative explanations for the fracture-initiating behaviour of these inclusions have been proposed: (1) the volume increase which accompanies the α to β phase transformation in stoichiometric NiS, and (2) the thermal expansion mismatch between the nickel sulfide phases and the glass matrix. The microstructure and microchemistry of the small inclusions (80 to 250 μm spheres), needed to determine the cause of fracture, have not been well characterized hitherto. The aim of this communication is to report a detailed TEM and EDS study of the inclusions.


Author(s):  
Songquan Sun ◽  
Richard D. Leapman

Analyses of ultrathin cryosections are generally performed after freeze-drying because the presence of water renders the specimens highly susceptible to radiation damage. The water content of a subcellular compartment is an important quantity that must be known, for example, to convert the dry weight concentrations of ions to the physiologically more relevant molar concentrations. Water content can be determined indirectly from dark-field mass measurements provided that there is no differential shrinkage between compartments and that there exists a suitable internal standard. The potential advantage of a more direct method for measuring water has led us to explore the use of electron energy loss spectroscopy (EELS) for characterizing biological specimens in their frozen hydrated state.We have obtained preliminary EELS measurements from pure amorphous ice and from cryosectioned frozen protein solutions. The specimens were cryotransfered into a VG-HB501 field-emission STEM equipped with a 666 Gatan parallel-detection spectrometer and analyzed at approximately −160 C.


2018 ◽  
Vol 16 (2) ◽  
pp. 219-226
Author(s):  
Sri Rizqi Annisa ◽  
Dewi Larasati ◽  
Endang Bekti K

The aim of this study was to determine the characterization of shredded mureel fish with kluwih substitution on water content, protein content, fiber content and organoleptic (preference for crispness and taste). This study uses a simple Randomized Complete Design (RCD) with the substitution treatment of kluwih and mureel fish, with the following ratio: S1 (240g: 60g), S2 (210g: 90g), S3 (180g: 120g), S4 (150g: 150g), S5 (120g: 180g). Data were analyzed statistically by analysis of variance and if there was a significant effect, further testing was done with BNJ at the level of 5%. The results showed that kluwih substitution in the manufacture of mureel fish shredded had an average: water content of 8.33-10.62%, protein :16.83-22.00%, fiber : 6.79-6.99%, score crispness 2-6.12, taste score 2.6-6.6. Based on the results of the analysis of the variety of kluwih substitutes and mureel fish have a significant effect on water content, protein content and crisp organoleptic test, taste on mureel fish fillet, and no significant effect on fiber content. The best kluwih substitution in S3 treatment with 120 grams of substitute kluwih and 180 grams of mureel fish.


2003 ◽  
Vol 2 (3) ◽  
pp. 368
Author(s):  
Hongkyu Yoon ◽  
Albert J. Valocchi ◽  
Charles J. Werth

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1041
Author(s):  
Mazhar Hussain ◽  
Mattias O’Nils ◽  
Jan Lundgren

High temperatures complicate the direct measurements needed for continuous characterization of the properties of molten materials such as glass. However, the assumption that geometrical changes when the molten material is in free-fall can be correlated with material characteristics such as viscosity opens the door to a highly accurate contactless method characterizing small dynamic changes. This paper proposes multi-camera setup to achieve accuracy close to the segmentation error associated with the resolution of the images. The experimental setup presented shows that the geometrical parameters can be characterized dynamically through the whole free-fall process at a frame rate of 600 frames per second. The results achieved show the proposed multi-camera setup is suitable for estimating the length of free-falling molten objects.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2160
Author(s):  
Alexander Bogdanov ◽  
Ekaterina Kaneva ◽  
Roman Shendrik

Elpidite belongs to a special group of microporous zirconosilicates, which are of great interest due to their capability to uptake various molecules and ions, e.g., some radioactive species, in their structural voids. The results of a combined electron probe microanalysis and single-crystal X-ray diffraction study of the crystals of elpidite from Burpala (Russia) and Khan-Bogdo (Mongolia) deposits are reported. Some differences in the chemical compositions are observed and substitution at several structural positions within the structure of the compounds are noted. Based on the obtained results, a detailed crystal–chemical characterization of the elpidites under study was carried out. Three different structure models of elpidite were simulated: Na2ZrSi6O15·3H2O (related to the structure of Russian elpidite), partly Ca-replaced Na1.5Ca0.25ZrSi6O15·2.75H2O (close to elpidite from Mongolia), and a hypothetical CaZrSi6O15·2H2O. The vibration spectra of the models were obtained and compared with the experimental one, taken from the literature. The strong influence of water molecule vibrations on the shape of IR spectra of studied structural models of elpidite is discussed in the paper.


Sign in / Sign up

Export Citation Format

Share Document