scholarly journals Tutorials for Integrating CAD/CAM in Engineering Curricula

2018 ◽  
Vol 8 (3) ◽  
pp. 151 ◽  
Author(s):  
AMM Ullah ◽  
Khalifa Harib

This article addresses the issue of educating engineering students with the knowledge and skills of Computer-Aided Design and Manufacturing (CAD/CAM). In particular, three carefully designed tutorials—cutting tool offsetting, tool-path generation for freeform surfaces, and the integration of advanced machine tools (e.g., hexapod-based machine tools) with solid modeling—are described. The tutorials help students gain an in-depth understanding of how the CAD/CAM-relevant hardware devices and software packages work in real-life settings. At the same time, the tutorials help students achieve the following educational outcomes: (1) an ability to apply the knowledge of mathematics, science, and engineering; (2) an ability to design a system, component, or process to meet the desired needs, (3) an ability to identify, formulate, and solve engineering problems; and (4) an ability to use the techniques, skills, and modern engineering tools that are necessary for engineering practice. The tutorials can be modified for incorporating other contemporary issues (e.g., additive manufacturing, reverse engineering, and sustainable manufacturing), which can be delved into as a natural extension of this study.

2016 ◽  
Vol 853 ◽  
pp. 79-84 ◽  
Author(s):  
D. Morales-Palma ◽  
Andrés Jesús Martínez-Donaire ◽  
Gabriel Centeno ◽  
C. Vallellano

This work aims to generate the digital documentation related to a number of manufacturing processes on different machine tools. The project is developed with the contribution of engineering students doing their final thesis within this field. Different machine tools and machining and incremental forming processes have been virtualized by using the CAD/CAM software CATIA V5. Some of the modeled parts were finally manufactured after checking and post-processing the NC code. Digital documentation is developed on different formats (e.g. photographs, videos, images and simulations) in order to be used as a teaching complement.


2006 ◽  
Vol 129 (2) ◽  
pp. 400-406 ◽  
Author(s):  
R. Molina-Carmona ◽  
A. Jimeno ◽  
R. Rizo-Aldeguer

Background. Tool path generation problem is one of the most complexes in computer aided manufacturing. Although some efficient algorithms have been developed to solve it, their technological dependency makes them efficient in only a limited number of cases. Method of Approach. Our aim is to propose a model that will set apart the geometrical issues involved in the manufacturing process from the purely technology-dependent physical issues by means of a topological system. This system applies methods and concepts used in mathematical morphology paradigms. Thus, we will obtain a geometrical abstraction which will not only provide solutions to typically complex problems but also the possibility of applying these solutions to any machining environment regardless of the technology. Presented in the paper is a method for offsetting any kind of curve. Specifically, we use parametric cubic curves, which is one of the most general and popular models in computer aided design (CAD)/computer aided manufacturing (CAM) applications. Results. The resulting method avoids any constraint in object or tool shape and obtains valid and optimal trajectories, with a low temporal cost of O(n∙m), which is corroborated by the experiments. It also avoids some precision errors that are present in the most popular commercial CAD/CAM libraries. Conclusions. The use of morphology as the base of the formulation avoids self-intersections and discontinuities and allows the system to machine free-form shapes using any tool without constraints. Most numerical and geometrical problems are also avoided. Obtaining a practical algorithm from the theoretical formulation is straightforward. The resulting procedure is simple and efficient.


Author(s):  
Mohamed Galaleldin ◽  
Hanan Anis

The primary purpose of this study is to explore the relationship between engineering students’ year of study, gender and grit level. This study also aims to assess whether there is any relationship between students’ peer assessment scores in a collaborative project-based learning course and their goal orientation — either towards performance goals or learning goals — and their grit level. The study design is a quasi-experimental design, and the methods used in this study are quantitative. Student grit level was measured using a 12-item scale. The questionnaire was administered in three engineering design courses at different levels of study. The first course is an introduction to engineering design course for firstyear engineering and computer sciences students; the second is an introduction to engineering design course for second-year engineering and computer science students; and the third is a computer-aided design/computer-aidedmanufacturing (CAD/CAM) engineering design capstone course for fourth-year mechanical engineering students.  Data collection occurred during the fall semester of 2018- 2019 academic year. Students’ grit level was not found to be a predictor of students’ peer assessment scores, although their goal orientation predicted their level of contribution to their team project.  


Author(s):  
H S Choy ◽  
K W Chan

Tool path generation based on contour-parallel offset has many practical applications, especially in pocket milling. However, the tool path segments offset from the pocket boundary usually form many corners. In milling operation, these corners with accumulated material will have an adverse effect on milling performance. This paper proposes an improved numerically controlled (NC) tool path pattern for pocket milling. Bow-like tool path segments are appended to a conventional contour-parallel tool path at the corner positions. The cutter loops along the appended tool path so that the corner material is machined progressively in several passes. By adjusting the number of appended tool path loops, cutting resistance can be controlled. The proposed tool path generation for dealing with different corner shapes was implemented as an addon user function in a computer aided design/manufacture (CAD/CAM) system. Cutting tests confirmed that the proposed tool path pattern is useful for clearing accumulated material at pocket corners while maintaining a higher cutting stability.


2017 ◽  
Vol 42 (5) ◽  
pp. E6 ◽  
Author(s):  
William T. Couldwell ◽  
Joel D. MacDonald ◽  
Charles L. Thomas ◽  
Bradley C. Hansen ◽  
Aniruddha Lapalikar ◽  
...  

The authors have developed a simple device for computer-aided design/computer-aided manufacturing (CAD-CAM) that uses an image-guided system to define a cutting tool path that is shared with a surgical machining system for drilling bone. Information from 2D images (obtained via CT and MRI) is transmitted to a processor that produces a 3D image. The processor generates code defining an optimized cutting tool path, which is sent to a surgical machining system that can drill the desired portion of bone. This tool has applications for bone removal in both cranial and spine neurosurgical approaches. Such applications have the potential to reduce surgical time and associated complications such as infection or blood loss. The device enables rapid removal of bone within 1 mm of vital structures. The validity of such a machining tool is exemplified in the rapid (< 3 minutes machining time) and accurate removal of bone for transtemporal (for example, translabyrinthine) approaches.


2014 ◽  
Vol 903 ◽  
pp. 15-20 ◽  
Author(s):  
Rusdi Mat Song ◽  
Safian Sharif ◽  
Ahmad Yasir Md Said ◽  
Mohd Tanwyn Mohd Khushairi

Selection of the most suitable tool path strategy is very essential during machining especially in computer aided design and manufacture (CAD/CAM) as well as computer numerical control (CNC) machining. Existence of various tool path strategies to be applied on advanced composite materials such as aluminium epoxy required extensive researches in determining the best combination of tool path and cutting parameters for better machinability performance. Pocket milling of aluminium epoxy specimen via CAD/CAM was conducted in this study to investigate the effect of three types of tool path strategies namely Inward Helical, Outward Helical and Back and Forth. Uncoated high speed steel (HSS-Co8) ball end mill was used throughout the experiments. The machining responses that were evaluated include machining time, tool wear rate, tool life and surface finish of the machined pockets. In general, the effect of tool path strategy was highly significant on the machining responses and results showed that Back and Forth strategy offered the best machinability results when compared to the other strategies.


Author(s):  
A. N. Bozhko

Computer-aided design of assembly processes (Computer aided assembly planning, CAAP) of complex products is an important and urgent problem of state-of-the-art information technologies. Intensive research on CAAP has been underway since the 1980s. Meanwhile, specialized design systems were created to provide synthesis of assembly plans and product decompositions into assembly units. Such systems as ASPE, RAPID, XAP / 1, FLAPS, Archimedes, PRELEIDES, HAP, etc. can be given, as an example. These experimental developments did not get widespread use in industry, since they are based on the models of products with limited adequacy and require an expert’s active involvement in preparing initial information. The design tools for the state-of-the-art full-featured CAD/CAM systems (Siemens NX, Dassault CATIA and PTC Creo Elements / Pro), which are designed to provide CAAP, mainly take into account the geometric constraints that the design imposes on design solutions. These systems often synthesize technologically incorrect assembly sequences in which known technological heuristics are violated, for example orderliness in accuracy, consistency with the system of dimension chains, etc.An AssemBL software application package has been developed for a structured analysis of products and a synthesis of assembly plans and decompositions. The AssemBL uses a hyper-graph model of a product that correctly describes coherent and sequential assembly operations and processes. In terms of the hyper-graph model, an assembly operation is described as shrinkage of edge, an assembly plan is a sequence of shrinkages that converts a hyper-graph into the point, and a decomposition of product into assembly units is a hyper-graph partition into sub-graphs.The AssemBL solves the problem of minimizing the number of direct checks for geometric solvability when assembling complex products. This task is posed as a plus-sum two-person game of bicoloured brushing of an ordered set. In the paradigm of this model, the brushing operation is to check a certain structured fragment for solvability by collision detection methods. A rational brushing strategy minimizes the number of such checks.The package is integrated into the Siemens NX 10.0 computer-aided design system. This solution allowed us to combine specialized AssemBL tools with a developed toolkit of one of the most powerful and popular integrated CAD/CAM /CAE systems.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 959
Author(s):  
Verónica Rodríguez ◽  
Celia Tobar ◽  
Carlos López-Suárez ◽  
Jesús Peláez ◽  
María J. Suárez

The aim of this study was to investigate the load to fracture and fracture pattern of prosthetic frameworks for tooth-supported fixed partial dentures (FPDs) fabricated with different subtractive computer-aided design and computer-aided manufacturing (CAD-CAM) materials. Materials and Methods: Thirty standardized specimens with two abutments were fabricated to receive three-unit posterior FDP frameworks with an intermediate pontic. Specimens were randomly divided into three groups (n = 10 each) according to the material: group 1 (MM)—milled metal; group 2 (L)—zirconia; and group 3 (P)—Polyetheretherketone (PEEK). The specimens were thermo-cycled and subjected to a three-point bending test until fracture using a universal testing machine (cross-head speed: 1 mm/min). Axial compressive loads were applied at the central fossa of the pontics. Data analysis was made using one-way analysis of variance, Tamhane post hoc test, and Weibull statistics (α = 0.05). Results: Significant differences were observed among the groups for the fracture load (p < 0.0001). MM frameworks showed the highest fracture load values. The PEEK group registered higher fracture load values than zirconia samples. The Weibull statistics corroborated these results. The fracture pattern was different among the groups. Conclusions: Milled metal provided the highest fracture load values, followed by PEEK, and zirconia. However, all tested groups demonstrated clinically acceptable fracture load values higher than 1000 N. PEEK might be considered a promising alternative for posterior FPDs.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3819
Author(s):  
Ting-Hsun Lan ◽  
Yu-Feng Chen ◽  
Yen-Yun Wang ◽  
Mitch M. C. Chou

The computer-aided design/computer-aided manufacturing (CAD/CAM) fabrication technique has become one of the hottest topics in the dental field. This technology can be applied to fixed partial dentures, removable dentures, and implant prostheses. This study aimed to evaluate the feasibility of NaCaPO4-blended zirconia as a new CAD/CAM material. Eleven different proportional samples of zirconia and NaCaPO4 (xZyN) were prepared and characterized by X-ray diffractometry (XRD) and Vickers microhardness, and the milling property of these new samples was tested via a digital optical microscope. After calcination at 950 °C for 4 h, XRD results showed that the intensity of tetragonal ZrO2 gradually decreased with an increase in the content of NaCaPO4. Furthermore, with the increase in NaCaPO4 content, the sintering became more obvious, which improved the densification of the sintered body and reduced its porosity. Specimens went through milling by a computer numerical control (CNC) machine, and the marginal integrity revealed that being sintered at 1350 °C was better than being sintered at 950 °C. Moreover, 7Z3N showed better marginal fit than that of 6Z4N among thirty-six samples when sintered at 1350 °C (p < 0.05). The milling test results revealed that 7Z3N could be a new CAD/CAM material for dental restoration use in the future.


Sign in / Sign up

Export Citation Format

Share Document