scholarly journals Analysis of a DC-DC Flyback Converter Variant for Thermoelectric Generators with Partial Energy Processing

Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 619
Author(s):  
Ricardo Marroquín-Arreola ◽  
Daniel Salazar-Pérez ◽  
Mario Ponce-Silva ◽  
Héctor Hernández-De León ◽  
Juan A. Aquí-Tapia ◽  
...  

This paper presents a theoretical analysis of a DC-DC flyback converter variant applied in energy harvesting based on thermoelectric generators. The main contribution of the article is the analysis and obtaining the equations of the behavior of the converter with a rearrangement of the elements of the traditional flyback converter in such a way that the converter only processes part of the energy while the other part is delivered directly to the load. This is achieved by connecting the secondary of the flyback in series with the load, and this assembly, in turn, is placed in parallel with the primary and the voltage source. This configuration means that the topology can only be a boost topology; however, there are benefits such as partial power processing (R2P2) and reduced stress on converter components in both voltage and current; all this leads to increase the efficiency. A Low Frequency Averaging Analysis (LFAA) was used to determine the behavior of the proposed circuit, and a simple equivalent circuit to analyze was obtained. In order to validate the theoretical analysis, a circuit was simulated in Spice and implemented in an 18 W prototype. Experimental results showed that the converter has an efficiency of 92.65%. Moreover, the rearranged flyback processed only 56% of the input power.

Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 60
Author(s):  
Mario Ponce-Silva ◽  
Daniel Salazar-Pérez ◽  
Oscar Miguel Rodríguez-Benítez ◽  
Luis Gerardo Vela-Valdés ◽  
Abraham Claudio-Sánchez ◽  
...  

The main contribution of this paper is to show a new AC/DC converter based on the rearrangement of the flyback converter. The proposed circuit only manages part of the energy and the rest is delivered directly from the source to the load. Therefore, with the new topology, the efficiency is increased, and the stress of the components is reduced. The rearrangement consist of the secondary of the flyback is placed in parallel with the load, and this arrangement is connected in series with the primary side and the rectified voltage source. The re-arranged flyback is only a reductive topology and with no magnetic isolation. It was studied as a power supply for LEDs. A low frequency averaged analysis (LFAA) was used to determine the behavior of the proposed circuit and an equivalent circuit much easier to analyze was obtained. To validate the theoretical analysis, a design methodology was developed for the re-arranged flyback converter. The designed circuit was implemented in a 10 W prototype. Experimental results showed that the converter has a THDi = 21.7% and a PF = 0.9686.


Alloy Digest ◽  
1981 ◽  
Vol 30 (9) ◽  

Abstract KANTHAL 70 alloy was designed to provide a high positive temperature coefficient to electrical resistance comparable with that of pure nickel; however, it has much higher electrical resistivity than pure nickel. This makes it useful as a voltage regulator when placed in series with another electrical device across a fluctuating voltage source. Kanthal 70 has a maximum recommended operating temperature of 600 C and is used widely in resistance thermometers and in various appliance and automotive applications. This datasheet provides information on composition, physical properties, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: Ni-270. Producer or source: The Kanthal Corporation.


1950 ◽  
Vol 21 (4) ◽  
pp. 302-303
Author(s):  
Louis A. Rosenthal

2021 ◽  
pp. 2150050
Author(s):  
Mutaz Y. Melhem ◽  
Christiana Chamon ◽  
Shahriar Ferdous ◽  
Laszlo B. Kish

Recently, several passive and active attack methods have been proposed against the Kirchhoff–Law–Johnson–Noise (KLJN) secure key exchange scheme by utilizing direct (DC) loop currents. The DC current attacks are relatively easy, but their practical importance is low. On the other hand, parasitic alternating (AC) currents are virtually omnipresent in wire-based systems. Such situations exist due to AC ground loops and electromagnetic interference (EMI). However, utilizing AC currents for attacks is a harder problem. Here, we introduce and demonstrate AC current attacks in various frequency ranges. The attacks exploit a parasitic/periodic AC voltage-source at either Alice’s or Bob’s end. In the low-frequency case, the procedure is the generalized form of the former DC ground-loop-based attack. In the high-frequency case, the power density spectrum of the wire voltage is utilized. The attack is demonstrated in both the low and the high-frequency situations. Defense protocols against the attack are also discussed.


2018 ◽  
Vol 28 (07) ◽  
pp. 1850082 ◽  
Author(s):  
Jianhua Yang ◽  
Dawen Huang ◽  
Miguel A. F. Sanjuán ◽  
Houguang Liu

We investigate the vibrational resonance by the numerical simulation and theoretical analysis in an overdamped system with fractional order potential nonlinearities. The nonlinearity is a fractional power function with deflection, in which the response amplitude presents vibrational resonance phenomenon for any value of the fractional exponent. The response amplitude of vibrational resonance at low-frequency is deduced by the method of direct separation of slow and fast motions. The results derived from the theoretical analysis are in good agreement with those of numerical simulation. The response amplitude decreases with the increase of the fractional exponent for weak excitations. The amplitude of the high-frequency excitation can induce the vibrational resonance to achieve the optimal response amplitude. For the overdamped systems, the nonlinearity is the crucial and necessary condition to induce vibrational resonance. The response amplitude in the nonlinear system is usually not larger than that in the corresponding linear system. Hence, the nonlinearity is not a sufficient factor to amplify the response to the low-frequency excitation. Furthermore, the resonance may be also induced by only a single excitation acting on the nonlinear system. The theoretical analysis further proves the correctness of the numerical simulation. The results might be valuable in weak signal processing.


Author(s):  
V. D. Pavlov ◽  

The use of the symbolic (complex) method has significantly simplified the study of resonance and near-resonance phenomena, in particular, it has made it possible to deeply unify and formalize the consideration of various mechanical systems. The cumbersome and time-consuming operations associated with composing and solving differential equations have been replaced by simple algebraic transformations. The method is based on the mechanical analogue of Ohm’s law in a complex representation and the concept of mechanical reactance, resistance, impedance, susseptance, conductance and admittance. Resonances and antiresonances of forces and velocities are determined. Resonances occur when the elements are connected in parallel with a force source, or when the elements are connected in series with a velocity source. Antiresonances occur when a parallel connection and a speed source are combined, or a serial connection and a force source are combined. These concepts are a generalization to mechanics of the concepts of «voltage source» and «current source» from theoretical electrical engineering. The closest to the source of speed in its properties is a crank-rocker (connecting rod) mechanism with a massive flywheel. The source of force corresponds more to the rod of the significantly smaller of the two connected pneumatic cylinders.


Author(s):  
Sourav Paul ◽  
Provas Kumar Roy

Low frequency oscillation has been a major threat in large interconnected power system. These low frequency oscillations curtain the power transfer capability of the line. Power system stabilizer (PSS) helps in diminishing these low frequency oscillations by providing auxiliary control signal to the generator excitation input, thereby restoring stability of the system. In this chapter, the authors have incorporated the concept of oppositional based learning (OBL) along with differential search algorithm (DSA) to solve PSS problem. The proposed technique has been implemented on both single input and dual input PSS, and comparative study has been done to show the supremacy of the proposed techniques. The convergence characteristics as well authenticate the sovereignty of the considered algorithms.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1544
Author(s):  
Chen Yang ◽  
Fan Xie ◽  
Yanfeng Chen ◽  
Wenxun Xiao ◽  
Bo Zhang

In order to obtain more realistic characteristics of the converter, a fractional-order inductor and capacitor are used in the modeling of power electronic converters. However, few researches focus on power electronic converters with a fractional-order mutual inductance. This paper introduces a fractional-order flyback converter with a fractional-order mutual inductance and a fractional-order capacitor. The equivalent circuit model of the fractional-order mutual inductance is derived. Then, the state-space average model of the fractional-order flyback converter in continuous conduction mode (CCM) are established. Moreover, direct current (DC) analysis and alternating current (AC) analysis are performed under the Caputo fractional definition. Theoretical analysis shows that the orders have an important influence on the ripple, the CCM operating condition and transfer functions. Finally, the results of circuit simulation and numerical calculation are compared to verify the correctness of the theoretical analysis and the validity of the model. The simulation results show that the fractional-order flyback converter exhibits smaller overshoot, shorter setting time and higher design freedom compared with the integer-order flyback converter.


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2268 ◽  
Author(s):  
Jianfeng Hong ◽  
Mingjie Guan ◽  
Zaifa Lin ◽  
Qiu Fang ◽  
Wei Wu ◽  
...  

In order to compensate the large leakage inductance and improve the power transmission capacity, capacitors are widely used in inductive power transfer (IPT) systems, which results in high voltage or current stresses in the resonant tanks and limits higher volt-ampere (VA) rating of the transfer power, especially in medium and low frequency applications. This paper presents a symmetrical half-bridge resonant converter (SHRC) for series-series/series compensated IPT systems with detailed analysis and design. It operates at a relatively low frequency of 12.5 kHz, suitable for IGBT applications. The theoretical analysis shows that, compared with full-bridge resonant converter (FRC) for IPT, the symmetrical half-bridge resonant converter achieves a higher efficiency. Simulation and a prototype of 1500 W power output were built to verify the theoretical analysis. The experimental results show that the power loss of SHRC is 39.7 W while that of FRC is 79.4 W, which is consistent with the theoretical analysis. The global efficiency of the IPT based on the proposed converter is 91.6%.


Sign in / Sign up

Export Citation Format

Share Document