scholarly journals Classifier Performance Evaluation for Lightweight IDS Using Fog Computing in IoT Security

Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1633
Author(s):  
Belal Sudqi Khater ◽  
Ainuddin Wahid Abdul Abdul Wahab ◽  
Mohd Yamani Idna Idris ◽  
Mohammed Abdulla Hussain ◽  
Ashraf Ahmed Ibrahim ◽  
...  

In this article, a Host-Based Intrusion Detection System (HIDS) using a Modified Vector Space Representation (MVSR) N-gram and Multilayer Perceptron (MLP) model for securing the Internet of Things (IoT), based on lightweight techniques and using Fog Computing devices, is proposed. The Australian Defence Force Academy Linux Dataset (ADFA-LD), which contains exploits and attacks on various applications, is employed for the analysis. The proposed method is divided into the feature extraction stage, the feature selection stage, and classification modeling. To maintain the lightweight criteria, the feature extraction stage considers a combination of 1-gram and 2-gram for the system call encoding. In addition, a Sparse Matrix is used to reduce the space by keeping only the weight of the features that appear in the trace, thus ignoring the zero weights. Subsequently, Linear Correlation Coefficient (LCC) is utilized to compensate for any missing N-gram in the test data. In the feature selection stage, the Mutual Information (MI) method and Principle Component Analysis (PCA) are utilized and then compared to reduce the number of input features. Following the feature selection stage, the modeling and performance evaluation of various Machine Learning classifiers are conducted using a Raspberry Pi IoT device. Further analysis of the effect of MLP parameters, such as the number of nodes, number of features, activation, solver, and regularization parameters, is also conducted. From the simulation, it can be seen that different parameters affect the accuracy and lightweight evaluation. By using a single hidden layer and four nodes, the proposed method with MI can achieve 96% accuracy, 97% recall, 96% F1-Measure, 5% False Positive Rate (FPR), highest curve of Receiver Operating Characteristic (ROC), and 96% Area Under the Curve (AUC). It also achieved low CPU time usage of 4.404 (ms) milliseconds and low energy consumption of 8.809 (mj) millijoules.

2019 ◽  
Vol 9 (1) ◽  
pp. 178 ◽  
Author(s):  
Belal Sudqi Khater ◽  
Ainuddin Wahid Bin Abdul Wahab ◽  
Mohd Yamani Idna Bin Idris ◽  
Mohammed Abdulla Hussain ◽  
Ashraf Ahmed Ibrahim

Fog computing is a paradigm that extends cloud computing and services to the edge of the network in order to address the inherent problems of the cloud, such as latency and lack of mobility support and location-awareness. The fog is a decentralized platform capable of operating and processing data locally and can be installed in heterogeneous hardware which makes it ideal for Internet of Things (IoT) applications. Intrusion Detection Systems (IDSs) are an integral part of any security system for fog and IoT networks to ensure the quality of service. Due to the resource limitations of fog and IoT devices, lightweight IDS is highly desirable. In this paper, we present a lightweight IDS based on a vector space representation using a Multilayer Perceptron (MLP) model. We evaluated the presented IDS against the Australian Defense Force Academy Linux Dataset (ADFA-LD) and Australian Defense Force Academy Windows Dataset (ADFA-WD), which are new generation system calls datasets that contain exploits and attacks on various applications. The simulation shows that by using a single hidden layer and a small number of nodes, we are able to achieve a 94% Accuracy, 95% Recall, and 92% F1-Measure in ADFA-LD and 74% Accuracy, 74% Recall, and 74% F1-Measure in ADFA-WD. The performance is evaluated using a Raspberry Pi.


Author(s):  
Marwa Ben Salah ◽  
Ameni Yengui ◽  
Mahmoud Neji

In this paper, we present two steps in the process of automatic annotation in archeological images. These steps are feature extraction and feature selection. We focus our research on archeological images which are very much studied in our days. It presents the most important steps in the process of automatic annotation in an image. Feature extraction techniques are applied to get the feature that will be used in classifying and recognizing the images. Also, the selection of characteristics reduces the number of unattractive characteristics. However, we reviewed various images of feature extraction techniques to analyze the archaeological images. Each feature represents one or more feature descriptors in the archeological images. We focus on the descriptor shape of the archaeological objects extraction in the images using contour method-based shape recognition of the monuments. So, the feature selection stage serves to acquire the most interesting characteristics to improve the accuracy of the classification. In the feature selection section, we present a comparative study between feature selection techniques. Then we give our proposal of application of methods of selection of the characteristics of the archaeological images. Finally, we calculate the performance of two steps already mentioned: the extraction of characteristics and the selection of characteristics.


Author(s):  
Amer Sallam ◽  
Akram A. Almohammedi ◽  
Abdulguddoos S. A. Gaid ◽  
Y. A. Shihab ◽  
Mahran Sadeq ◽  
...  

2020 ◽  
Vol 13 (1) ◽  
pp. 71
Author(s):  
Zhiyong Xu ◽  
Weicun Zhang ◽  
Tianxiang Zhang ◽  
Jiangyun Li

Semantic segmentation is a significant method in remote sensing image (RSIs) processing and has been widely used in various applications. Conventional convolutional neural network (CNN)-based semantic segmentation methods are likely to lose the spatial information in the feature extraction stage and usually pay little attention to global context information. Moreover, the imbalance of category scale and uncertain boundary information meanwhile exists in RSIs, which also brings a challenging problem to the semantic segmentation task. To overcome these problems, a high-resolution context extraction network (HRCNet) based on a high-resolution network (HRNet) is proposed in this paper. In this approach, the HRNet structure is adopted to keep the spatial information. Moreover, the light-weight dual attention (LDA) module is designed to obtain global context information in the feature extraction stage and the feature enhancement feature pyramid (FEFP) structure is promoted and employed to fuse the contextual information of different scales. In addition, to achieve the boundary information, we design the boundary aware (BA) module combined with the boundary aware loss (BAloss) function. The experimental results evaluated on Potsdam and Vaihingen datasets show that the proposed approach can significantly improve the boundary and segmentation performance up to 92.0% and 92.3% on overall accuracy scores, respectively. As a consequence, it is envisaged that the proposed HRCNet model will be an advantage in remote sensing images segmentation.


2012 ◽  
Vol 532-533 ◽  
pp. 1191-1195 ◽  
Author(s):  
Zhen Yan Liu ◽  
Wei Ping Wang ◽  
Yong Wang

This paper introduces the design of a text categorization system based on Support Vector Machine (SVM). It analyzes the high dimensional characteristic of text data, the reason why SVM is suitable for text categorization. According to system data flow this system is constructed. This system consists of three subsystems which are text representation, classifier training and text classification. The core of this system is the classifier training, but text representation directly influences the currency of classifier and the performance of the system. Text feature vector space can be built by different kinds of feature selection and feature extraction methods. No research can indicate which one is the best method, so many feature selection and feature extraction methods are all developed in this system. For a specific classification task every feature selection method and every feature extraction method will be tested, and then a set of the best methods will be adopted.


Sign in / Sign up

Export Citation Format

Share Document