scholarly journals An Artificial Intelligence-Assisted Portable Low-Cost Device for the Rapid Detection of SARS-CoV-2

Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2065
Author(s):  
Mukunthan Tharmakulasingam ◽  
Nouman S. Chaudhry ◽  
Manoharanehru Branavan ◽  
Wamadeva Balachandran ◽  
Aurore C. Poirier ◽  
...  

An artificial intelligence-assisted low-cost portable device for the rapid detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is presented here. This standalone temperature-controlled device houses tubes designed for conducting reverse transcription loop-mediated isothermal amplification (RT-LAMP) assays. Moreover, the device utilises tubes illuminated by LEDs, an in-built camera, and a small onboard computer with automated image acquisition and processing algorithms. This intelligent device significantly reduces the normal assay run time and removes the subjectivity associated with operator interpretation of colourimetric RT-LAMP results. To further improve this device’s usability, a mobile app has been integrated into the system to control the LAMP assay environment and to visually display the assay results by connecting the device to a smartphone via Bluetooth. This study was undertaken using ~5000 images produced from the ~200 LAMP amplification assays using the prototype device. Synthetic RNA and a small panel of positive and negative SARS-CoV-2 patient samples were assayed for this study. State-of-the-art image processing and artificial intelligence algorithms were applied to these images to analyse them and to select the most efficient algorithm. The template matching algorithm for image extraction and MobileNet CNN architecture for classification results provided 98.0% accuracy with an average run time of 20 min to confirm the endpoint result. Two working points were chosen based on the best compromise between sensitivity and specificity. The high sensitivity point has a sensitivity value of 99.12% and specificity value of 70.8%, while at the high specificity point, the sensitivity is 96.05% and specificity 93.59%. Furthermore, this device provides an efficient and cost-effective platform for non-health professionals to detect not only SARS-CoV-2 but also other pathogens in resource-limited laboratories, factories, airports, schools, universities, and homes.

2020 ◽  
Author(s):  
D.R. Marinowic ◽  
G. Zanirati ◽  
F.V.F. Rodrigues ◽  
M.V.C. Grahl ◽  
A.M. Alcará ◽  
...  

Abstract Phylogenetic analyses demonstrated that etiologic agent of pandemic outbreak is a betacoronavirus named SARS-CoV-2. For public health interventions, a diagnostic test with high sensitivity and specificity is required. The gold standard protocol for diagnosis by WHO is the RT-PCR. To detect low viral load and large-scale screening a low-cost diagnostic test becomes necessary. Here we develop a cost-effective test capable of to detect the new coronavirues. We validated an auxiliary protocol for molecular diagnosis with RT-PCR SYBR Green methodology to successfully screen negative cases of SARS-CoV-2. Our results demonstrated that a set of primers with high specificity, and no homology with other viruses from Coronovideae family or human respiratory tract pathogenic viruses. Optimization of annealing temperature and polymerization time led to an high specificity in the PCR products. We have developed a more affordable and swift methodology for negative SARS-CoV-2 screening. This methodology can be applied on large scale populational to soften panic and economic burden through guidance for isolation strategies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
D. R. Marinowic ◽  
G. Zanirati ◽  
F. V. F. Rodrigues ◽  
M. V. C. Grahl ◽  
A. M. Alcará ◽  
...  

AbstractPhylogenetic analysis has demonstrated that the etiologic agent of the 2020 pandemic outbreak is a betacoronavirus named SARS-CoV-2. For public health interventions, a diagnostic test with high sensitivity and specificity is required. The gold standard protocol for diagnosis by the Word Health Organization (WHO) is RT-PCR. To detect low viral loads and perform large-scale screening, a low-cost diagnostic test is necessary. Here, we developed a cost-effective test capable of detecting SARS-CoV-2. We validated an auxiliary protocol for molecular diagnosis with the SYBR Green RT-PCR methodology to successfully screen negative cases of SARS-CoV-2. Our results revealed a set of primers with high specificity and no homology with other viruses from the Coronovideae family or human respiratory tract pathogenic viruses, presenting with complementarity only for rhinoviruses/enteroviruses and Legionella spp. Optimization of the annealing temperature and polymerization time led to a high specificity in the PCR products. We have developed a more affordable and swift methodology for negative SARS-CoV-2 screening. This methodology can be applied on a large scale to soften panic and economic burden through guidance for isolation strategies.


Author(s):  
Zhijia Peng ◽  
Xiaogang Lin ◽  
Weiqi Nian ◽  
Xiaodong Zheng ◽  
Jayne Wu

Early diagnosis and treatment have always been highly desired in the fight against cancer, and detection of circulating tumor DNA (ctDNA) has recently been touted as highly promising for early cancer screening. Consequently, the detection of ctDNA in liquid biopsy gains much attention in the field of tumor diagnosis and treatment, which has also attracted research interest from the industry. However, traditional gene detection technology is difficult to achieve low cost, real-time and portable measurement of ctDNA. Electroanalytical biosensors have many unique advantages such as high sensitivity, high specificity, low cost and good portability. Therefore, this review aims to discuss the latest development of biosensors for minimal-invasive, rapid, and real-time ctDNA detection. Various ctDNA sensors are reviewed with respect to their choices of receptor probes, detection strategies and figures of merit. Aiming at the portable, real-time and non-destructive characteristics of biosensors, we analyze their development in the Internet of Things, point-of-care testing, big data and big health.


Viruses ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 972 ◽  
Author(s):  
Mohammed A. Rohaim ◽  
Emily Clayton ◽  
Irem Sahin ◽  
Julianne Vilela ◽  
Manar E. Khalifa ◽  
...  

Until vaccines and effective therapeutics become available, the practical solution to transit safely out of the current coronavirus disease 19 (CoVID-19) lockdown may include the implementation of an effective testing, tracing and tracking system. However, this requires a reliable and clinically validated diagnostic platform for the sensitive and specific identification of SARS-CoV-2. Here, we report on the development of a de novo, high-resolution and comparative genomics guided reverse-transcribed loop-mediated isothermal amplification (LAMP) assay. To further enhance the assay performance and to remove any subjectivity associated with operator interpretation of results, we engineered a novel hand-held smart diagnostic device. The robust diagnostic device was further furnished with automated image acquisition and processing algorithms and the collated data was processed through artificial intelligence (AI) pipelines to further reduce the assay run time and the subjectivity of the colorimetric LAMP detection. This advanced AI algorithm-implemented LAMP (ai-LAMP) assay, targeting the RNA-dependent RNA polymerase gene, showed high analytical sensitivity and specificity for SARS-CoV-2. A total of ~200 coronavirus disease (CoVID-19)-suspected NHS patient samples were tested using the platform and it was shown to be reliable, highly specific and significantly more sensitive than the current gold standard qRT-PCR. Therefore, this system could provide an efficient and cost-effective platform to detect SARS-CoV-2 in resource-limited laboratories.


Author(s):  
Allabergan Babajanov ◽  
Khudoyberdi Abdivaitov

The article describes in detail the ways in which agricultural enterprises operating in irrigated regions, including farms, create automated systems for the development and implementation of internal land management projects, the use of specialized expert systems based on artificial intelligence in assessing projects and their economic efficiency. Geographical information for the internal organization of farmland, in particular, the design of irrigation plots, crop rotations, forest plantations, field paths and irrigation canals, which are key elements in the territorial arrangement of the proposed sowing areas; ways to create such projects with wide application of GIS technologies in a short amount of time at low cost, as well as promptly eliminate deficiencies identified by expert systems. It is explained that the introduction of expert systems based on artificial intelligence into the practice of projecting of land management is more cost-effective than traditional estimation methods.


2021 ◽  
Author(s):  
Pattamaporn Kittayapong ◽  
Parinda Thayanukul ◽  
Benchaporn Lertanantawong ◽  
Worachart Sirawaraporn ◽  
Surat Charasmongkolcharoen ◽  
...  

Background Wolbachia is an endosymbiont bacterium generally found in about 40% of insects, including mosquitoes, but it is absent in Aedes aegypti which is an important vector of several arboviral diseasesdengue, chikungunya, Zika, and yellow fever. The evidence that Wolbachia trans-infected Ae. aegypti mosquitoes lost their vectorial competence and became less capable of transmitting arboviruses to human hosts highlights the potential of using Wolbachia - based approaches for prevention and control of arboviral diseases. Recently, release of Wolbachia trans-infected Ae. aegypti has been deployed widely in many countries for the control of mosquito-borne viral diseases. Field surveillance and monitoring of Wolbachia presence in released mosquitoes is important for the success of these control programs. So far, a number of studies have reported the development of loop mediated isothermal amplification (LAMP) assays to detect Wolbachia in mosquitoes, but the methods still have some specificity issues. Methodology/Principal Findings We describe here the development of a LAMP combined with the DNA strand displacement-based electrochemical sensor (BIOSENSOR) method to detect wAlbB Wolbachia in trans-infected Ae . aegypti . Our developed LAMP primers were more specific to wAlbB detection than those of the previous published ones if  the assays were conducted with low-cost and non-specific detecting dyes. The detection capacity of our LAMP technique was 3.8 nM and the detection limit reduced to 2.16 fM when combined with the BIOSENSOR. Our study demonstrates that the BIOSENSOR can also be applied as a stand-alone method for detecting Wolbachia ; and it showed high sensitivity when used with the crude DNA extracts of macerated mosquito samples without DNA purification. Conclusions/Significance Our results suggest that both LAMP and BIOSENSOR, either used in combination or stand-alone, are robust and sensitive. The methods have good potential for routine detection of Wolbachia in mosquitoes during field surveillance and monitoring of Wolbachia -based release programs, especially in countries with limited resources.


2020 ◽  
Author(s):  
Bhanu Pratap Singh ◽  
Nirvisha Singh

With high paced growth in biometrics, its easy availability to capture various biometric features, it is <a>emerging as one of the most valuable technologies for multifactor authentication to verify a user’s identity, for data security. </a>Organizations encourage their members to use biometrics, but <a>they are hesitant to use due to perceived security risks. Because of its low usage rate, many medium and small segment organizations find it unfeasible to deploy robust biometric systems. </a>We propose a solution of an extra layer of security, via a low-cost mobile app framework, “Bio-Guard,” to use biometrics, more securely. We tested the app for its design, functions, usability, and it got a score of more than 71% on the usability scale and a reasonably low equal error rate (EER) of 6%. The survey to evaluate the usefulness of the app showed a favorable response of 80%. The results show a good potential of the app to make access to biometric data more secure. The app may enhance users’ confidence-level in encouraging higher participation of users in the usage of biometrics. Higher usage rates may make deployment of biometrics more cost-effective for many medium and small segment organizations to decrease their information security risk.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5477
Author(s):  
Ivana Podunavac ◽  
Vasa Radonic ◽  
Vesna Bengin ◽  
Nikolina Jankovic

In this paper, a microwave microfluidic sensor based on spoof surface plasmon polaritons (SSPPs) was proposed for ultrasensitive detection of dielectric constant. A novel unit cell for the SSPP structure is proposed and its behaviour and sensing potential analysed in detail. Based on the proposed cell, the SSPP microwave structure with a microfluidic reservoir is designed as a multilayer configuration to serve as a sensing platform for liquid analytes. The sensor is realized using a combination of rapid, cost-effective technologies of xurography, laser micromachining, and cold lamination bonding, and its potential is validated in the experiments with edible oil samples. The results demonstrate high sensitivity (850 MHz/epsilon unit) and excellent linearity (R2 = 0.9802) of the sensor, which, together with its low-cost and simple fabrication, make the proposed sensor an excellent candidate for the detection of small changes in the dielectric constant of edible oils and other liquid analytes.


2020 ◽  
Author(s):  
Mohammed A Rohaim ◽  
Emily Clayton ◽  
Irem Sahin ◽  
Julianne Vilela ◽  
Manar E Khalifa ◽  
...  

Until vaccines and effective therapeutics become available, the practical way to transit safely out of the current lockdown may include the implementation of an effective testing, tracing and tracking system. However, this requires a reliable and clinically validated diagnostic platform for the sensitive and specific identification of SARS-CoV-2. Here, we report on the development of a de novo, high-resolution and comparative genomics guided reverse-transcribed loop-mediated isothermal amplification (LAMP) assay. To further enhance the assay performance and to remove any subjectivity associated with operator interpretation of result, we engineered a novel hand-held smart diagnostic device. The robust diagnostic device was further furnished with automated image acquisition and processing algorithms, and the collated data was processed through artificial intelligence (AI) pipelines to further reduce the assay run time and the subjectivity of the colorimetric LAMP detection. This advanced AI algorithm-implemented LAMP (ai-LAMP) assay, targeting the RNA-dependent RNA polymerase gene, showed high analytical sensitivity and specificity for SARS-CoV-2. A total of ~200 coronavirus disease (CoVID-19)-suspected patient samples were tested using the platform and it was shown to be reliable, highly specific and significantly more sensitive than the current gold standard qRT-PCR. The system could provide an efficient and cost-effective platform to detect SARS-CoV-2 in resource-limited laboratories.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hongke Qu ◽  
Chunmei Fan ◽  
Mingjian Chen ◽  
Xiangyan Zhang ◽  
Qijia Yan ◽  
...  

AbstractThe cyclic signal amplification technology has been widely applied for the ultrasensitive detection of many important biomolecules, such as nucleic acids, proteins, enzymes, adenosine triphosphate (ATP), metal ions, exosome, etc. Due to their low content in the complex biological samples, traditional detection methods are insufficient to satisfy the requirements for monitoring those biomolecules. Therefore, effective and sensitive biosensors based on cyclic signal amplification technology are of great significance for the quick and simple diagnosis and treatment of diseases. Fluorescent biosensor based on cyclic signal amplification technology has become a research hotspot due to its simple operation, low cost, short time, high sensitivity and high specificity. This paper introduces several cyclic amplification methods, such as rolling circle amplification (RCA), strand displacement reactions (SDR) and enzyme-assisted amplification (EAA), and summarizes the research progress of using this technology in the detection of different biomolecules in recent years, in order to provide help for the research of more efficient and sensitive detection methods. Graphical Abstract


Sign in / Sign up

Export Citation Format

Share Document