scholarly journals An Effective Transmission Scheme Based on Early Congestion Detection for Information-Centric Network

Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2205
Author(s):  
Yong Xu ◽  
Hong Ni ◽  
Xiaoyong Zhu

As one of the candidates for future network architecture, Information-Centric Networking (ICN) has revolutionized the manner of content retrieval by transforming the communication mode from host-centric to information-centric. Unlike a traditional TCP/IP network, ICN uses a location-independent name to identify content and takes a receiver-driven model to retrieve the content. Moreover, ICN routers not only perform a forwarding function but also act as content providers due to pervasive in-network caching. The network traffic is more complicated and routers are more prone to congestion. These distinguished characteristics pose new challenges to ICN transmission control mechanism. In this paper, we propose an effective transmission scheme by combining the receiver-driven transport protocol and the router-driven congestion detection mechanism. We first outline the process of content retrieval and transmission in an IP-compatible ICN architecture and propose a practical receiver-driven transport protocol. Then, we present an early congestion detection mechanism applied on ICN routers based on an improved Active Queue Management (AQM) algorithm and design a receiver-driven congestion control algorithm. Finally, experiment results show that the proposed transmission scheme can maintain high bandwidth utilization and significantly reduce transmission delay and packet loss rate.

2018 ◽  
Author(s):  
Phanidra Palagummi ◽  
Vedant Somani ◽  
Krishna M. Sivalingam ◽  
Balaji Venkat

Networking connectivity is increasingly based on wireless network technologies, especially in developing nations where the wired network infrastructure is not accessible to a large segment of the population. Wireless data network technologies based on 2G and 3G are quite common globally; 4G-based deployments are on the rise during the past few years. At the same time, the increasing high-bandwidth and low-latency requirements of mobile applications has propelled the Third Generation Partnership Project (3GPP) standards organization to develop standards for the next generation of mobile networks, based on recent advances in wireless communication technologies. This standard is called the Fifth Generation (5G) wireless network standard. This paper presents a high-level overview of the important architectural components, of the advanced communication technologies, of the advanced networking technologies such as Network Function Virtualization and other important aspects that are part of the 5G network standards. The paper also describes some of the common future generation applications that require low-latency and high-bandwidth communications.


Photonics ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 11
Author(s):  
Fulong Yan ◽  
Changshun Yuan ◽  
Chao Li ◽  
Xiong Deng

Interconnecting networks adopting Fast Optical Switches (FOS) can achieve high bandwidth, low latency, and low power consumption. We propose and demonstrate a novel interconnecting topology based on FOS (FOSquare) with distributed fast flow control which is suitable for HPC infrastructures. We also present an Optimized Mapping (OPM) algorithm that maps the most communication-related processes inside a rack. We numerically investigate and compare the network performance of FOSquare with Leaf-Spine under real traffic traces collected by running multiple applications (CG, MG, MILC, and MINI_MD) in an HPC infrastructure. The numerical results show that the FOSquare can reduce >10% latency with respect to Leaf-Spine under the scenario of 16 available cores.


Author(s):  
Muhammad Ishaq ◽  
Mohammad Kaleem ◽  
Numan Kifayat

This chapter briefly introduces the data center network and reviews the challenges for future intra-data-center networks in terms of scalability, cost effectiveness, power efficiency, upgrade cost, and bandwidth utilization. Current data center network architecture is discussed in detail and the drawbacks are pointed out in terms of the above-mentioned parameters. A detailed background is provided that how the technology moved from opaque to transparent optical networks. Additionally, it includes different data center network architectures proposed so far by different researchers/team/companies in order to address the current problems and meet the demands of future intra-data-center networks.


2020 ◽  
pp. 197-220 ◽  
Author(s):  
Yasmine Djebaili ◽  
Azeddine Bilami

This article describes how fault tolerance is an essential issue for many WSN (Wireless Sensor Network) applications such as wildlife monitoring, battlefield surveillance and health monitoring. It represents a great challenge for researchers regarding to the characteristics of sensor nodes which are prone to failures due essentially to their limited resources. Faults may occur, not only when sensor nodes exhaust their energy, but also when the congestion phenomenon emerges, because of a high traffic in the network and limited storage capacity of the sensor nodes. In order to support fault tolerance in WSNs, the authors propose a new scheme which incorporates a link quality estimation algorithm and a congestion detection mechanism to enable nodes that present high quality links to be chosen for routing in a non-congested area in case of faults. Evaluations through simulations under NS2 show that our proposed protocol tolerates faults with a minimum cost relatively to HEEP protocol and improves network's performances comparatively to other fault tolerant protocols such as EF-LEACH.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 85560-85572 ◽  
Author(s):  
Pilong Guo ◽  
Rongxiang Yuan ◽  
Yahong Chen ◽  
Changsong Cai ◽  
Lin Yang

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Wentao Zhao ◽  
Ping Dong ◽  
Min Guo ◽  
Yuyang Zhang ◽  
Xuehong Chen

In the scenario of mobile fog computing (MFC), communication between vehicles and fog layer, which is called vehicle-to-fog (V2F) communication, needs to use bandwidth resources as much as possible with low delay and high tolerance for errors. In order to adapt to these harsh scenarios, there are important technical challenges concerning the combination of network coding (NC) and multipath transmission to construct high-quality V2F communication for cloud-aware MFC. Most NC schemes exhibit poor reliability in burst errors that often occur in high-speed movement scenarios. These can be improved by using interleaving technology. However, most traditional interleaving schemes for multipath transmission are designed based on round robin (RR) or weighted round robin (WRR), in practice, which can waste a lot of bandwidth resources. In order to solve those problems, this paper proposes a novel multipath transmission scheme for cloud-aware MFC, which is called Bidirectional Selection Scheduling (BSS) scheme. Under the premise of realizing interleaving, since BSS can be used in conjunction with a lot of path scheduling algorithms based on Earliest Delivery Path First (EDPF), it can make better use of bandwidth resources. As a result, BSS has high reliability and bandwidth utilization in harsh scenarios. It can meet the high-quality requirements of cloud-aware MFC for transmission.


Author(s):  
Chakib Nehnouh ◽  
Mohamed Senouci

To provide correct data transmission and to handle the communication requirements, the routing algorithm should find a new path to steer packets from the source to the destination in a faulty network. Many solutions have been proposed to overcome faults in network-on-chips (NoCs). This article introduces a new fault-tolerant routing algorithm, to tolerate permanent and transient faults in NoCs. This solution called DINRA can satisfy simultaneously congestion avoidance and fault tolerance. In this work, a novel approach inspired by Catnap is proposed for NoCs using local and global congestion detection mechanisms with a hierarchical sub-network architecture. The evaluation (on reliability, latency and throughput) shows the effectiveness of this approach to improve the NoC performances compared to state of art. In addition, with the test module and fault register integrated in the basic architecture, the routers are able to detect faults dynamically and re-route packets to fault-free and congestion-free zones.


Sign in / Sign up

Export Citation Format

Share Document