scholarly journals Adaptive Noise-Resistant Low-Power ASK Demodulator Design in UHF RFID Chips

Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3168
Author(s):  
Yao-Hua Xu ◽  
Shuai Yang ◽  
Hang Li ◽  
Ji-Ming Lv ◽  
Na Bai

This paper presents a new signal demodulator for ultra-high frequency (UHF) radio frequency identification (RFID) tag chips. The demodulator is used to demodulate amplitude shift keying (ASK) modulated signals with the advantages of high noise immunity, large input range and low power consumption. The demodulator consists of a charge pump, an envelope detector, and a comparator. In particular, the demodulator provides a hysteresis input signal to the comparator through two envelope detectors, resulting in better noise immunity. The demodulator is based on a standard 0.13 µm CMOS process. The demodulator is suitable for demodulating high frequency signals at 900 MHz with a data rate of 128 Kbps and can operate up to 78 °C. The input signal has a peak of 1.2 V and consumes as little as 113.6 nW. The demodulator also has a noise immunity threshold of approximately 3.729 V.

Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1042
Author(s):  
Peiqing Han ◽  
Zhaofeng Zhang ◽  
Yajun Xia ◽  
Niansong Mei

A low-power dual-mode receiver is presented for ultra-high-frequency (UHF) radio frequency identification (RFID) systems. The reconfigurable architecture of the tag is proposed to be compatible with low-power and high-sensitivity operating modes. The read range of RFID system and the lifetime of the tag are increased by photovoltaic, thermoelectric and RF energy-harvesting topology. The receiver is implemented in a 0.18-μm standard CMOS process and occupies an active area of 0.65 mm × 0.7 mm. For low-power mode, the tag is powered by the rectifier and the sensitivity is −18 dBm. For high-sensitivity mode, the maximum PCE of the fully on-chip energy harvester is 46.5% with over 1-μW output power and the sensitivity is −40 dBm with 880 nW power consumption under the supply voltage of 0.8 V.


2021 ◽  
Vol 44 (1) ◽  
pp. 40-52
Author(s):  
Tracy Aleong ◽  
Kit Fai Pun

Radio Frequency Identification (RFID) technology transmits data wirelessly and falls under the broad classification of Automatic Identification and Data Capture (AIDC). The advances in RFID technology continue to be accepted worldwide for various tracking and monitoring type applications. This paper reviews the principle of RFID system operation using an extensive search of relevant articles from technology management and related journals, over the past two decades. It explores 1) the RFID tags operating in the ultra-high frequency (UHF) band, 2) analyses some of the major advancements of this technology in the field of sensor tagging solutions in the past two decades, and 3) discusses industry-based applications utilising UHF RFID sensor tagging solutions for process measurement data acquisition. The main challenges identified are privacy and security concerns on their applications in industry. The paper contributes to amalgamating a list of UHF RFID industry-based applications. It is expected that the findings from this review exercise would shed light on critical areas of the UHF RFID Technology.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5460 ◽  
Author(s):  
Franck Kimetya Byondi ◽  
Youchung Chung

This paper presents a passive cavity type Ultra High Frequency (UHF) Radio Frequency Identification (RFID) tag antenna having the longest read-range, and compares it with existing long-range UHF RFID tag antenna. The study also demonstrates mathematically and experimentally that our proposed longest-range UHF RFID cavity type tag antenna has a longer read-range than existing passive tag antennas. Our tag antenna was designed with 140 × 60 × 10 mm3 size, and reached 26 m measured read-range and 36.3 m mathematically calculated read-range. This UHF tag antenna can be applied to metal and non-metal objects. By adding a further sensing capability, it can have a great benefit for the Internet of Things (IoT) and wireless sensor networks (WSN).


2013 ◽  
Vol 371 ◽  
pp. 797-801 ◽  
Author(s):  
Octavian Ionescu ◽  
Gabriela Cristina Ionescu

The system presented in this article has been developed in order to solve several problems occurred during uploading raw materials in the storage tanks of a dry mix mortars plant and to keep an accurate material balance of raw materials introduced in the production process. The proposed approach was to implement a UHF, RFID (Ultra High Frequency, Radio Frequency Identification Device) system consisting of tags on the intake of the uploading pipes and outlets of the transportation trucks and a UHF, RFID Writer/Reader with four antennas in the proximity of uploading and to create an associate database for tracking the uploaded materials. The newly developed system has been successfully operationally tested in a dry mix mortar plant nearby Ploiesti.


2012 ◽  
Vol 43 (10) ◽  
pp. 708-713 ◽  
Author(s):  
E. Fernández ◽  
A. Beriain ◽  
H. Solar ◽  
I. Rebollo ◽  
A. García-Alonso ◽  
...  

2013 ◽  
Vol 816-817 ◽  
pp. 957-961
Author(s):  
Feng Ying Huang ◽  
Jun Wang ◽  
Yu Sen Xu ◽  
Ji Wei Huang

This paper proposes a new synchronized serial-parallel CRC(Cycle Redundancy Check) with PIE(Pulse Interval Encoding) decoding circuit for the UHF(Ultra-High Frequency) RFID(Radio Frequency Identification), which is based on the ISO/IEC 18000-6C standards protocol. The parallel algorithm of CRC circuit is derived, and the serial or parallel CRC circuit on RFID tag chip is evaluated in this paper. Finally, the designed circuit is simulated and analyzed on the FPGA platform. Simulation results show that the proposed circuit meets the communication requirement of the protocol and addresses the problem of low data processing rate of conventional serial CRC circuit, as well as implements 1 to 8 degree of parallelism of the parallel CRC circuit for UHF RFID.


2014 ◽  
Vol 697 ◽  
pp. 425-428
Author(s):  
Yan Zhong Yu ◽  
Yun Yan Wang ◽  
Yan Ru Chen

A miniaturized circularly polarized (CP) antenna for ultra-high frequency (UHF) radio-frequency identification (RFID) reader is designed in the present paper. For the aim of miniaturizing antenna, the square radiating patch is opened by four T-shape slots. This can extend the route of surface current, as a result the operating frequency drops and the size reduces. In additional two diagonal corners of the radiation patch are truncated by a square to achieve CP operation. The designed antenna is calculated and optimized by HFSS. The optimized antenna exhibits satisfied performances, and is therefore suitable for UHF RFID reader applications. The designed antenna shows the advantages of small size, simple structure, and low cost.


2014 ◽  
Vol 7 (5) ◽  
pp. 507-513 ◽  
Author(s):  
Smail Hassouni ◽  
Hassan Qjidaa

This paper introduces a VDD generator for the ultrahigh frequency (UHF) passive Radio-frequency identification (RFID) tag, consisting of an RF-limiter, an NMOS rectifier, a DC-limiter, and a regulator. The proposed NMOS rectifier utilizes diode-connected native NMOS transistors with ultralow-threshold voltage instead of Schottky diodes. The theoretical equations for predicting the performance of the VDD generator are provided and verified by both simulation results in 90 nm CMOS process. The proposed VDD generator generates a 1.19-V stable output voltage with low-power dissipation and a 26.96% larger power conversion efficiency under conditions of 50 Ω antenna, 900 MHz, −23 dBm input power and 1 M DC output load. The chip area of the proposed VDD generator is only 105 × 85 μm. The simulation results indicated that the presented novel VDD generator is capable to provide efficient, stable, and input-independent power supply for Passive UHF RFID tag


Transport ◽  
2016 ◽  
Vol 33 (2) ◽  
pp. 353-363 ◽  
Author(s):  
Sanja Bauk ◽  
Anke Schmeink ◽  
Joan Colomer

The paper proposes a Radio Frequency IDentification (RFID) model for enhancing port workers’ safety with reference to the Port of Bar (Montenegro) as a developing seaport operating in a transitional environment. The paper also highlights the lack of appropriate Information and Communication Technology (ICT) solutions in some developing seaports, including safety-related ones. It emphasizes the importance of safety measures through the prism of reducing the number of accidents, and gives a review of some RFID safety solutions in the harsh environments. The main part of the paper deals with the RFID worker’s safety model proposed according to the Port of Bar’s individual needs. The model has been presented at a logic level, while some of the physical and link layers performances between the set of an active and several passive RFID devices embedded to the port workers’ Personal Protective Equipment (PPE) and the Ultra High Frequency (UHF) RFID readers located at the port perimeter, are simulated in Matlab and OMNeT++. The obtained results followed by discussions can be used as landmarks to the ports’ management in adapting this or a similar model for enhancing safety measures in the port and its promoting as a safety one at the maritime market.


Author(s):  
Varun Bhogal ◽  
Zornitza Genova Prodanoff ◽  
Sanjay P. Ahuja ◽  
Kenneth Martin

RFID (radio frequency identification) technology has gained popularity in a number of applications. Decreased cost of hardware components along with wide adoption of international RFID standards have led to the rise of this technology. One of the major factors associated with the implementation of RFID infrastructure is the cost of tags. RFID tags operating in the low frequency spectrum are widely used because they are the least expensive, but have a small implementation range. This paper presents an analysis of RFID performance across low frequency (LF), high frequency (HF), and ultra-high frequency (UHF) environments. The authors' evaluation is theoretical, using a passive-tag BFSA based simulation model that assumes 10 to 1,500 tags per reader and is created with OPNET Modeler 17. Ceteris paribus, the authors' results indicate that total census delay is lowest for UHF tags, while network throughput performance of LF tags is highest for large scale implementations of hundreds of tags in reader's range. A statistical analysis has been conducted on the findings for the three different sets.


Sign in / Sign up

Export Citation Format

Share Document