scholarly journals Reliability Analysis and Fault-Tolerant Operation in a Multilevel Inverter for Industrial Application

Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 98
Author(s):  
Mohammad Fahad ◽  
Marwan Alsultan ◽  
Shafiq Ahmad ◽  
Adil Sarwar ◽  
Mohd Tariq ◽  
...  

The extensive employment of power semiconductor devices in multilevel inverters (MLIs) has the consequence of increased failure probabilities. With numerous applications demanding highly reliable inverters, several fault-tolerant schemes have been devised to address switch open-circuit faults. This paper analyzes a multilevel inverter topology for IGBT modules undergoing open-circuit faults, a major impediment to reliable operation within a power converter. Reconfiguration of modulation is performed post-fault. A modulation scheme is implemented across failure modes as a hybrid of nearest level control and selective harmonic elimination. Reliability assessment of the topology is performed, including a comparison with previous literature in terms of component requirements and reliability. Simulation results validate the proposed solutions.

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4302
Author(s):  
Mohammad Fahad ◽  
Mohd Tariq ◽  
Adil Sarwar ◽  
Mohammad Modabbir ◽  
Mohd Aman Zaid ◽  
...  

As the applications of power electronic converters increase across multiple domains, so do the associated challenges. With multilevel inverters (MLIs) being one of the key technologies used in renewable systems and electrification, their reliability and fault ride-through capabilities are highly desirable. While using a large number of semiconductor components that are the leading cause of failures in power electronics systems, fault tolerance against switch open-circuit faults is necessary, especially in remote applications with substantial maintenance penalties or safety-critical operation. In this paper, a fault-tolerant asymmetric reduced device count multilevel inverter topology producing an 11-level output under healthy conditions and capable of operating after open-circuit fault in any switch is presented. Nearest-level control (NLC) based Pulse width modulation is implemented and is updated post-fault to continue operation at an acceptable power quality. Reliability analysis of the structure is carried out to assess the benefits of fault tolerance. The topology is compared with various fault-tolerant topologies discussed in the recent literature. Moreover, an artificial intelligence (AI)-based fault detection method is proposed as a machine learning classification problem using decision trees. The fault detection method is successful in detecting fault location with low computational requirements and desirable accuracy.


2020 ◽  
Vol 10 (6) ◽  
pp. 2146 ◽  
Author(s):  
Jingxuan Zhang ◽  
Hexu Sun ◽  
Zexian Sun ◽  
Yan Dong ◽  
Weichao Dong

The power converter is a significant device in a wind power system. The wind turbine will be shut down and off grid immediately with the occurrence of the insulated gate bipolar transistor (IGBT) module open-circuit fault of the power converter, which will seriously impact the stability of grid and even threaten personal safety. However, in the existing diagnosis strategies for the power converter there are few single and double IGBT module open-circuit fault diagnosis methods producing negative results, including erroneous judgment, omissive judgment and low accuracy. In this paper, a novel method to diagnose the single and double IGBT modules open-circuit faults of the permanent magnet synchronous generator (PMSG) wind turbine grid-side converter (GSC) is proposed: Primarily, by collecting the three-phase current varying with a wind speed of 22 states, including a normal state and 21 failure states of PMSG wind turbine GSC as the original signal data. Afterward, the original signal data are decomposed by using variational mode decomposition (VMD) to obtain the mode coefficient series, which are analyzed by the proposed method base on fault trend feature for extracting the trend feature vectors. Finally, the trend feature vectors are utilized as the input of the deep belief network (DBN) for decision-making and obtaining the classification results. The simulation and experimental results show that the proposed method can diagnose the single and double IGBT modules open-circuit faults of GSC, and the accuracy is higher than the benchmark models.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1556 ◽  
Author(s):  
Anzar Ahmad ◽  
MU Anas ◽  
Adil Sarwar ◽  
Mohammad Zaid ◽  
Mohd Tariq ◽  
...  

Conventional multilevel inverter topologies like neutral point clamped (NPC), flying capacitor (FC), and cascade H bridge (CHB) are employed in the industry but require a large number of switches and passive and active components for the generation of a higher number of voltage levels. Consequently, the cost and complexity of the inverter increases. In this work, the basic unit of a switched capacitor topology was generalized utilizing a cascaded H-bridge structure for realizing a switched-capacitor multilevel inverter (SCMLI). The proposed generalized MLI can generate a significant number of output voltage levels with a lower number of components. The operation of symmetric and asymmetric configurations was shown with 13 and 31 level output voltage generation, respectively. Self-capacitor voltage balancing and boosting capability are the key features of the proposed SCMLI structure. The nearest level control modulation scheme was employed for controlling and regulating the output voltage. Based on the longest discharging time, the optimum value of capacitance was also calculated. A generalized formula for the generation of higher voltage levels was also derived. The proposed model was simulated in the MATLAB®/Simulink 2016a environment. Simulation results were validated with the hardware implementation.


Author(s):  
Wahidah Abd Halim ◽  
Tengku Noor Ariana Tengku Azam ◽  
Komathi Applasamy ◽  
Auzani Jidin

<span lang="EN-US">Multilevel inverters are emerging as the new breed of power converter options for high power applications. They typically synthesis the staircase voltage waveform (from several dc sources) which reduced harmonic content. This paper presents a simple selective harmonic elimination (SHE) modulation for single-phase cascaded H-bridge (CHB) multilevel inverter. The optimum switching angle of the transcendental equations describing the fundamental and harmonic components is solved by means of the Newton-Raphson (NR) method. The proposed SHE scheme is performed through simulation using MATLAB/Simulink. This simulation results are then verified through experiment using Altera DE0-Nano field-programmable gate array (FPGA). The proposed SHE is efficient in eliminating the lowest-order harmonics and producing a higher quality output waveform with a better harmonic profile.  </span>


2020 ◽  
Vol 10 (10) ◽  
pp. 3516 ◽  
Author(s):  
Vitor F. Pires ◽  
Tito G. Amaral ◽  
Armando Cordeiro ◽  
Daniel Foito ◽  
Armando J. Pires ◽  
...  

The power electronic converter design is essential for the operation of the switched reluctance motor (SRM). Thus, a fault-tolerant power converter is fundamental to ensure high reliability and extend the drive operation. To achieve fault tolerance, fault detection and diagnosis methods are critical in order to identify, as soon as possible, the failure mode of the drive. To provide such capability, it is proposed in this paper a new fault-tolerant power converter scheme combined with a fault detection method regarding the most common power semiconductors failures in SRM drives. The fast and reliable proposed diagnosis method is based on the entropy theory. Based on this theory, normalized indexes (diagnostic variables) are created, which are independent from the load and speed of the motor. Through this method, it is possible to identify the faulty leg, as well as the type of power semiconductor fault. To test and evaluate the proposed solution several laboratory experiments were carried out using a 2 kW four-phase 8 / 6 SRM.


Author(s):  
Jingxuan Zhang ◽  
Hexu Sun ◽  
Zexian Sun ◽  
Yan Dong ◽  
Weichao Dong

The power converter is the significant device in a wind power system. Wind turbine will be shut down and off grid immediately with the occurrence of the IGBT module open-circuit fault of power converter, which will seriously impact the stability of grid and even threaten personal safety. However, in the existing diagnosis strategies of power converter, there are few single and double IGBT modules open-circuit fault diagnosis methods producing negative results including erroneous judgment, omissive judgment and low accuracy. In this paper, a novel method to diagnose the single and double IGBT modules open-circuit faults of the permanent magnet synchronous generator (PMSG) wind turbine grid-side converter (GSC) is proposed. Above all, collecting the three-phase current varying with wind speed of 22 failure states including a normal state of PMSG wind turbine GSC as the original signal data. Afterward, the original signal data are decomposed by using variational mode decomposition (VMD) to obtain the mode coefficient series, which are analyzed by the proposed method base on fault trend feature for extracting the trend feature vectors. Finally, the trend feature vectors are used as the input of deep belief network (DBN) for decision-making and obtaining the classification results. The simulation and experimental results show that the proposed method can diagnose the single and double IGBT modules open-circuit faults of GSC, and the accuracy is higher than the benchmark models.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4630
Author(s):  
Vivek Sharma ◽  
M. J. Hossain ◽  
S. M. Nawazish Ali ◽  
Muhammad Kashif

In recent years, photovoltaic (PV) systems have emerged as economical solutions for irrigation systems in rural areas. However, they are characterized by low voltage output and less reliable configurations. To address this issue in this paper, a promising inverter configuration called Impedance (Z)-source inverter (ZSI) is designed and implemented to obtain high voltage output with single-stage power conversion, particularly suitable for irrigation application. An improved and efficient modulation scheme and design specifications of the network parameters are derived. Additionally, a suitable fault-tolerant strategy is developed and implemented to improve reliability and efficiency. It incorporates an additional redundant leg with an improved control strategy to facilitate the fault-tolerant operation. The proposed fault-tolerant circuit is designed to handle switch failures of the inverter modules due to the open-circuit and short-circuit faults. The relevant simulation and experimental results under normal, faulty and post-fault operation are presented. The post-fault operation characteristics are identical to the normal operation. The motor performance characteristics such as load current, torque, harmonic spectrum, and efficiency are thoroughly analysed to prove the suitability of the proposed system for irrigation applications. This study provides an efficient and economical solution for rural irrigation utilized in developing countries, for example, India.


Multilevel Inverters are universally accepted due to their wide range of applications and numerous advantages. In spite of this the reliability of the multilevel inverters are still questionable due to the repeatedly failures of power semiconductor switches. The industries need a cost effective and reliable solution of switch failures, which can be implemented without making major changes in the existing system. If the fault cannot be located within few seconds then fault may cause for multiple switch faults or malfunction of entire system. In this contrast, a cost effective solution to detect open circuit fault of a power semiconductor switch in five level cascaded H-Bridge multilevel inverter has been presented in this paper. The detection method is based on output pole voltage analysis of inverter. The principle of this technique can be implemented on existing system with little modifications. It requires only one voltage sensor per phase, which is already available with the main control system. The output of the multilevel inverter and fault detection results are validate through simulation results.


Sign in / Sign up

Export Citation Format

Share Document