scholarly journals An Efficient Method for Generating Adversarial Malware Samples

Electronics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 154
Author(s):  
Yuxin Ding ◽  
Miaomiao Shao ◽  
Cai Nie ◽  
Kunyang Fu

Deep learning methods have been applied to malware detection. However, deep learning algorithms are not safe, which can easily be fooled by adversarial samples. In this paper, we study how to generate malware adversarial samples using deep learning models. Gradient-based methods are usually used to generate adversarial samples. These methods generate adversarial samples case-by-case, which is very time-consuming to generate a large number of adversarial samples. To address this issue, we propose a novel method to generate adversarial malware samples. Different from gradient-based methods, we extract feature byte sequences from benign samples. Feature byte sequences represent the characteristics of benign samples and can affect classification decision. We directly inject feature byte sequences into malware samples to generate adversarial samples. Feature byte sequences can be shared to produce different adversarial samples, which can efficiently generate a large number of adversarial samples. We compare the proposed method with the randomly injecting and gradient-based methods. The experimental results show that the adversarial samples generated using our proposed method have a high successful rate.

2020 ◽  
Vol 12 (1) ◽  
pp. 1-11
Author(s):  
Arivudainambi D. ◽  
Varun Kumar K.A. ◽  
Vinoth Kumar R. ◽  
Visu P.

Ransomware is a malware which affects the systems data with modern encryption techniques, and the data is recovered once a ransom amount is paid. In this research, the authors show how ransomware propagates and infects devices. Live traffic classifications of ransomware have been meticulously analyzed. Further, a novel method for the classification of ransomware traffic by using deep learning methods is presented. Based on classification, the detection of ransomware is approached with the characteristics of the network traffic and its communications. In more detail, the behavior of popular ransomware, Crypto Wall, is analyzed and based on this knowledge, a real-time ransomware live traffic classification model is proposed.


Author(s):  
Yuejun Liu ◽  
Yifei Xu ◽  
Xiangzheng Meng ◽  
Xuguang Wang ◽  
Tianxu Bai

Background: Medical imaging plays an important role in the diagnosis of thyroid diseases. In the field of machine learning, multiple dimensional deep learning algorithms are widely used in image classification and recognition, and have achieved great success. Objective: The method based on multiple dimensional deep learning is employed for the auxiliary diagnosis of thyroid diseases based on SPECT images. The performances of different deep learning models are evaluated and compared. Methods: Thyroid SPECT images are collected with three types, they are hyperthyroidism, normal and hypothyroidism. In the pre-processing, the region of interest of thyroid is segmented and the amount of data sample is expanded. Four CNN models, including CNN, Inception, VGG16 and RNN, are used to evaluate deep learning methods. Results: Deep learning based methods have good classification performance, the accuracy is 92.9%-96.2%, AUC is 97.8%-99.6%. VGG16 model has the best performance, the accuracy is 96.2% and AUC is 99.6%. Especially, the VGG16 model with a changing learning rate works best. Conclusion: The standard CNN, Inception, VGG16, and RNN four deep learning models are efficient for the classification of thyroid diseases with SPECT images. The accuracy of the assisted diagnostic method based on deep learning is higher than that of other methods reported in the literature.


2021 ◽  
Vol 10 (2) ◽  
pp. 205846012199029
Author(s):  
Rani Ahmad

Background The scope and productivity of artificial intelligence applications in health science and medicine, particularly in medical imaging, are rapidly progressing, with relatively recent developments in big data and deep learning and increasingly powerful computer algorithms. Accordingly, there are a number of opportunities and challenges for the radiological community. Purpose To provide review on the challenges and barriers experienced in diagnostic radiology on the basis of the key clinical applications of machine learning techniques. Material and Methods Studies published in 2010–2019 were selected that report on the efficacy of machine learning models. A single contingency table was selected for each study to report the highest accuracy of radiology professionals and machine learning algorithms, and a meta-analysis of studies was conducted based on contingency tables. Results The specificity for all the deep learning models ranged from 39% to 100%, whereas sensitivity ranged from 85% to 100%. The pooled sensitivity and specificity were 89% and 85% for the deep learning algorithms for detecting abnormalities compared to 75% and 91% for radiology experts, respectively. The pooled specificity and sensitivity for comparison between radiology professionals and deep learning algorithms were 91% and 81% for deep learning models and 85% and 73% for radiology professionals (p < 0.000), respectively. The pooled sensitivity detection was 82% for health-care professionals and 83% for deep learning algorithms (p < 0.005). Conclusion Radiomic information extracted through machine learning programs form images that may not be discernible through visual examination, thus may improve the prognostic and diagnostic value of data sets.


Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 210 ◽  
Author(s):  
Zied Tayeb ◽  
Juri Fedjaev ◽  
Nejla Ghaboosi ◽  
Christoph Richter ◽  
Lukas Everding ◽  
...  

Non-invasive, electroencephalography (EEG)-based brain-computer interfaces (BCIs) on motor imagery movements translate the subject’s motor intention into control signals through classifying the EEG patterns caused by different imagination tasks, e.g., hand movements. This type of BCI has been widely studied and used as an alternative mode of communication and environmental control for disabled patients, such as those suffering from a brainstem stroke or a spinal cord injury (SCI). Notwithstanding the success of traditional machine learning methods in classifying EEG signals, these methods still rely on hand-crafted features. The extraction of such features is a difficult task due to the high non-stationarity of EEG signals, which is a major cause by the stagnating progress in classification performance. Remarkable advances in deep learning methods allow end-to-end learning without any feature engineering, which could benefit BCI motor imagery applications. We developed three deep learning models: (1) A long short-term memory (LSTM); (2) a spectrogram-based convolutional neural network model (CNN); and (3) a recurrent convolutional neural network (RCNN), for decoding motor imagery movements directly from raw EEG signals without (any manual) feature engineering. Results were evaluated on our own publicly available, EEG data collected from 20 subjects and on an existing dataset known as 2b EEG dataset from “BCI Competition IV”. Overall, better classification performance was achieved with deep learning models compared to state-of-the art machine learning techniques, which could chart a route ahead for developing new robust techniques for EEG signal decoding. We underpin this point by demonstrating the successful real-time control of a robotic arm using our CNN based BCI.


2021 ◽  
Vol 13 (19) ◽  
pp. 10690
Author(s):  
Heelak Choi ◽  
Sang-Ik Suh ◽  
Su-Hee Kim ◽  
Eun Jin Han ◽  
Seo Jin Ki

This study aimed to investigate the applicability of deep learning algorithms to (monthly) surface water quality forecasting. A comparison was made between the performance of an autoregressive integrated moving average (ARIMA) model and four deep learning models. All prediction algorithms, except for the ARIMA model working on a single variable, were tested with univariate inputs consisting of one of two dependent variables as well as multivariate inputs containing both dependent and independent variables. We found that deep learning models (6.31–18.78%, in terms of the mean absolute percentage error) showed better performance than the ARIMA model (27.32–404.54%) in univariate data sets, regardless of dependent variables. However, the accuracy of prediction was not improved for all dependent variables in the presence of other associated water quality variables. In addition, changes in the number of input variables, sliding window size (i.e., input and output time steps), and relevant variables (e.g., meteorological and discharge parameters) resulted in wide variation of the predictive accuracy of deep learning models, reaching as high as 377.97%. Therefore, a refined search identifying the optimal values on such influencing factors is recommended to achieve the best performance of any deep learning model in given multivariate data sets.


2020 ◽  
Vol 14 ◽  
Author(s):  
Yaqing Zhang ◽  
Jinling Chen ◽  
Jen Hong Tan ◽  
Yuxuan Chen ◽  
Yunyi Chen ◽  
...  

Emotion is the human brain reacting to objective things. In real life, human emotions are complex and changeable, so research into emotion recognition is of great significance in real life applications. Recently, many deep learning and machine learning methods have been widely applied in emotion recognition based on EEG signals. However, the traditional machine learning method has a major disadvantage in that the feature extraction process is usually cumbersome, which relies heavily on human experts. Then, end-to-end deep learning methods emerged as an effective method to address this disadvantage with the help of raw signal features and time-frequency spectrums. Here, we investigated the application of several deep learning models to the research field of EEG-based emotion recognition, including deep neural networks (DNN), convolutional neural networks (CNN), long short-term memory (LSTM), and a hybrid model of CNN and LSTM (CNN-LSTM). The experiments were carried on the well-known DEAP dataset. Experimental results show that the CNN and CNN-LSTM models had high classification performance in EEG-based emotion recognition, and their accurate extraction rate of RAW data reached 90.12 and 94.17%, respectively. The performance of the DNN model was not as accurate as other models, but the training speed was fast. The LSTM model was not as stable as the CNN and CNN-LSTM models. Moreover, with the same number of parameters, the training speed of the LSTM was much slower and it was difficult to achieve convergence. Additional parameter comparison experiments with other models, including epoch, learning rate, and dropout probability, were also conducted in the paper. Comparison results prove that the DNN model converged to optimal with fewer epochs and a higher learning rate. In contrast, the CNN model needed more epochs to learn. As for dropout probability, reducing the parameters by ~50% each time was appropriate.


2020 ◽  
Vol 10 (23) ◽  
pp. 8400 ◽  
Author(s):  
Abdelkader Dairi ◽  
Fouzi Harrou ◽  
Ying Sun ◽  
Sofiane Khadraoui

The accurate modeling and forecasting of the power output of photovoltaic (PV) systems are critical to efficiently managing their integration in smart grids, delivery, and storage. This paper intends to provide efficient short-term forecasting of solar power production using Variational AutoEncoder (VAE) model. Adopting the VAE-driven deep learning model is expected to improve forecasting accuracy because of its suitable performance in time-series modeling and flexible nonlinear approximation. Both single- and multi-step-ahead forecasts are investigated in this work. Data from two grid-connected plants (a 243 kW parking lot canopy array in the US and a 9 MW PV system in Algeria) are employed to show the investigated deep learning models’ performance. Specifically, the forecasting outputs of the proposed VAE-based forecasting method have been compared with seven deep learning methods, namely recurrent neural network, Long short-term memory (LSTM), Bidirectional LSTM, Convolutional LSTM network, Gated recurrent units, stacked autoencoder, and restricted Boltzmann machine, and two commonly used machine learning methods, namely logistic regression and support vector regression. The results of this investigation demonstrate the satisfying performance of deep learning techniques to forecast solar power and point out that the VAE consistently performed better than the other methods. Also, results confirmed the superior performance of deep learning models compared to the two considered baseline machine learning models.


AI Magazine ◽  
2022 ◽  
Vol 42 (3) ◽  
pp. 7-18
Author(s):  
Harald Steck ◽  
Linas Baltrunas ◽  
Ehtsham Elahi ◽  
Dawen Liang ◽  
Yves Raimond ◽  
...  

Deep learning has profoundly impacted many areas of machine learning. However, it took a while for its impact to be felt in the field of recommender systems. In this article, we outline some of the challenges encountered and lessons learned in using deep learning for recommender systems at Netflix. We first provide an overview of the various recommendation tasks on the Netflix service. We found that different model architectures excel at different tasks. Even though many deep-learning models can be understood as extensions of existing (simple) recommendation algorithms, we initially did not observe significant improvements in performance over well-tuned non-deep-learning approaches. Only when we added numerous features of heterogeneous types to the input data, deep-learning models did start to shine in our setting. We also observed that deep-learning methods can exacerbate the problem of offline–online metric (mis-)alignment. After addressing these challenges, deep learning has ultimately resulted in large improvements to our recommendations as measured by both offline and online metrics. On the practical side, integrating deep-learning toolboxes in our system has made it faster and easier to implement and experiment with both deep-learning and non-deep-learning approaches for various recommendation tasks. We conclude this article by summarizing our take-aways that may generalize to other applications beyond Netflix.


Author(s):  
Rasha M. Al-Eidan ◽  
Hend Al-Khalifa ◽  
AbdulMalik Alsalman

The traditional standards employed for pain assessment have many limitations. One such limitation is reliability because of inter-observer variability. Therefore, there have been many approaches to automate the task of pain recognition. Recently, deep-learning methods have appeared to solve many challenges, such as feature selection and cases with a small number of data sets. This study provides a systematic review of pain-recognition systems that are based on deep-learning models for the last two years only. Furthermore, it presents the major deep-learning methods that were used in review papers. Finally, it provides a discussion of the challenges and open issues.


Sign in / Sign up

Export Citation Format

Share Document