scholarly journals 3D Printing Using a 60 GHz Millimeter Wave Segmented Parabolic Reflective Curved Antenna

Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 203 ◽  
Author(s):  
Benxiao Cai ◽  
Lingling Sun ◽  
Yuchao Lei

This paper proposes a segmented parabolic curved antenna, which can be used in the base station of a 60 GHz millimeter wave communication system, with an oblique Yagi antenna as a feed. By analyzing the reflection and multi-path interference cancellation phenomenon when the main lobe of the Yagi antenna is reflected, the problem of main lobe splitting is solved. 3D printing technology relying on PLA (polylactic acid) granule raw materials was used to make the coaxial connector bracket and segmented parabolic surface. The reflective surface was vacuum coated (via aluminum evaporation) with low-loss aluminum. The manufacturing method is environmentally friendly and the structure was printed with 0.1 mm accuracy based on large-scale commercial applications at a low cost. The experimental results show that the reflector antenna proposed in this paper achieves a high gain of nearly 20 dBi in 57–64 GHz frequency band and ensures that the main lobe does not split.

2018 ◽  
Vol 15 (3) ◽  
pp. 101-106
Author(s):  
Bijan K. Tehrani ◽  
Ryan A. Bahr ◽  
Manos M. Tentzeris

Abstract This article outlines the design, processing, and implementation of inkjet and 3D printing technologies for the development of fully printed, highly integrated millimeter-wave (mm-wave) wireless packages. The materials, tools, and processes of each technology are outlined and justified for their respective purposes. Inkjet-printed 3D interconnects directly interfacing a packaging substrate with an integrated circuit (IC) die are presented using printed dielectric ramps and coplanar waveguide transmission lines exhibiting low loss (.6–.8 dB/mm at 40 GHz). Stereolithography 3D printing is presented for the encapsulation of IC dice, enabling the application-specific integration of on-package structures, including dielectric lenses and frequency selective surface–based wireless filters. Finally, inkjet and 3D printing technology are combined to present sloped mm-wave interconnects through an encapsulant, or through mold vias, achieving a slope of up to 65° and low loss (.5–.6 dB/mm at 60 GHz). The combination of these additive techniques is highlighted for the development of scalable, application-specific wireless packages.


Author(s):  
Chung-Yi Hsu ◽  
Lih-Tyng Hwang ◽  
Chang-Yi Feng ◽  
Fa-Shian Chang ◽  
Shun-Min Wang ◽  
...  

2021 ◽  
Vol 13 (21) ◽  
pp. 11978
Author(s):  
Hadeer Abdalla ◽  
Kazi Parvez Fattah ◽  
Mohamed Abdallah ◽  
Adil K. Tamimi

3D printing, is a newly adopted technique in the construction sector with the aim to improve the economics and alleviate environmental impacts. This study assesses the eco-efficiency of 3D printing compared to conventional construction methods in large-scale structural fabrication. A single-storey 3D-printed house was selected in the United Arab Emirates to conduct the comparative assessment against traditional concrete construction. The life cycle assessment (LCA) framework is utilized to quantify the environmental loads of raw materials extraction and manufacturing, as well as energy consumption during construction and operation phases. The economics of the selected structural systems were investigated through life cycle costing analysis (LCCA), that included mainly the construction costs and energy savings. An eco-efficiency analysis was employed to aggregate the results of the LCA and LCCA into a single framework to aid in decision making by selecting the optimum and most eco-efficient alternative. The findings revealed that houses built using additive manufacturing and 3D printed materials were more environmentally favourable. The conventional construction method had higher impacts when compared to the 3D printing method with global warming potential of 1154.20 and 608.55 kg CO2 eq, non-carcinogenic toxicity 675.10 and 11.9 kg 1,4-DCB, and water consumption 233.35 and 183.95 m3, respectively. The 3D printed house was also found to be an economically viable option, with 78% reduction in the overall capital costs when compared to conventional construction methods. The combined environmental and economic results revealed that the overall process of the 3D-printed house had higher eco efficiency compared to concrete-based construction. The main results of the sensitivity analysis revealed that up to 90% of the environmental impacts in 3D printing mortars can be mitigated with decreasing cement ratios.


2017 ◽  
Vol 2017 (1) ◽  
pp. 000252-000257 ◽  
Author(s):  
Bijan K. Tehrani ◽  
Ryan A. Bahr ◽  
Manos M. Tentzeris

Abstract This paper outlines the design, processing, and implementation of inkjet and 3D printing technologies for the development of fully-printed, highly-integrated millimeter-wave (mm-wave) wireless packages. The materials, tools, and processes of each technology are outlined and justified for their respective purposes. Inkjet-printed 3D interconnects directly interfacing a packaging substrate with an IC die are presented using printed dielectric ramps and coplanar waveguide (CPW) transmission lines exhibiting low loss (0.6–0.8 dB/mm at 40 GHz). Stereolithography (SLA) 3D printing is presented for the encapsulation of IC dies, enabling the application-specific integration of on-package structures, including dielectric lenses and frequency selective surface (FSS)-based wireless filters. Finally, inkjet and 3D printing technology are combined to present sloped mm-wave interconnects through an encapsulation, or through-mold vias (TMVs), achieving a slope up to 65° and low loss (0.5–0.6 dB/mm at 60 GHz). The combination of these additive techniques is highlighted for the development of scalable, application-specific wireless packages.


2008 ◽  
Vol 29 (6) ◽  
pp. 625-627 ◽  
Author(s):  
Shun-Sheng Hsu ◽  
Kuo-Chih Wei ◽  
Cheng-Ying Hsu ◽  
Huey Ru-Chuang

Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 133 ◽  
Author(s):  
Mostafa Hefnawi

Heterogeneous networks (HetNets) employing massive multiple-input multiple-output (MIMO) and millimeter-wave (mmWave) technologies have emerged as a promising solution to enhance the network capacity and coverage of next-generation 5G cellular networks. However, the use of traditional fully-digital MIMO beamforming methods, which require one radio frequency (RF) chain per antenna element, is not practical for large-scale antenna arrays, due to the high cost and high power consumption. To reduce the number of RF chains, hybrid analog and digital beamforming has been proposed as an alternative structure. In this paper, therefore, we consider a HetNet formed with one macro-cell base station (MBS) and multiple small-cell base stations (SBSs) equipped with large-scale antenna arrays that employ hybrid analog and digital beamforming. The analog beamforming weight vectors of the MBS and the SBSs correspond to the the best-fixed multi-beams obtained by eigendecomposition schemes. On the other hand, digital beamforming weights are optimized to maximize the receive signal-to-interference-plus-noise ratio (SINR) of the effective channels consisting of the cascade of the analog beamforming weights and the actual channel. The performance is evaluated in terms of the beampatterns and the ergodic channel capacity and shows that the proposed hybrid beamforming scheme achieves near-optimal performance with only four RF chains while requiring considerably less computational complexity.


Author(s):  
Felipe Augusto Pereira de Figueiredo ◽  
Fabbryccio A. C. M. Cardoso ◽  
Joao Paulo Miranda ◽  
Ingrid Moerman ◽  
Claudio F. Dias ◽  
...  

In this paper, we identify issues and possible solutions in the key area of large-scale antenna systems, also know as Massive Multiple Input Multiple Output (MIMO) systems. Additionally, we propose the use of Massive MIMO technology as a means to tackle the uplink mixed-service communication problem. Under the assumption of an available physical narrowband shared channel (PNSCH), the capacity of the MTC network and, in turn, that of the whole system, can be increased by grouping Machine-Type Communication (MTC) devices into clusters and letting each cluster share the same time-frequency physical resource blocks. We study the feasibility of applying sub-optimal linear detection to the problem of detecting a large number of MTC devices sharing the same time-frequency resources at the uplink of a base station (BS) equipped with a large number of antennas, M. In our study, we derive the achievable lower-bound rates for the studied sub-optimal linear detectors and show that the transmitted power of each MTC device can be reduced as M increases, which is a very important result for powerconstrained MTC devices running on batteries. Our simulation results suggest that, as M is made progressively larger, the performance of sub-optimal linear detection methods approach the matched filter bound, also known as perfect interference-cancellation bound.


2014 ◽  
pp. 97-104 ◽  
Author(s):  
Electo Eduardo Silv Lora ◽  
Mateus Henrique Rocha ◽  
José Carlos Escobar Palacio ◽  
Osvaldo José Venturini ◽  
Maria Luiza Grillo Renó ◽  
...  

The aim of this paper is to discuss the major technological changes related to the implementation of large-scale cogeneration and biofuel production in the sugar and alcohol industry. The reduction of the process steam consumption, implementation of new alternatives in driving mills, the widespread practice of high steam parameters use in cogeneration facilities, the insertion of new technologies for biofuels production (hydrolysis and gasification), the energy conversion of sugarcane trash and vinasse, animal feed production, process integration and implementation of the biorefinery concept are considered. Another new paradigm consists in the wide spreading of sustainability studies of products and processes using the Life Cycle Assessment (LCA) and the implementation of sustainability indexes. Every approach to this issue has as an objective to increase the economic efficiency and the possibilities of the sugarcane as a main source of two basic raw materials: fibres and sugar. The paper briefly presents the concepts, indicators, state-of-the-art and perspectives of each of the referred issues.


Sign in / Sign up

Export Citation Format

Share Document