scholarly journals Simulation-Based System-Level Conducted Susceptibility Testing Method and Application to the Evaluation of Conducted-Noise Filters

Electronics ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 908 ◽  
Author(s):  
Junho Joo ◽  
Sang Il Kwak ◽  
Jong Hwa Kwon ◽  
Eakhwan Song

In this paper, a simulation-based system-level conducted susceptibility (CS) testing method for a wireless power transfer (WPT) system is proposed. The proposed method employs 3-dimensional electromagnetic (3D EM) models as well as equivalent circuit models to replace the measurement-based CS testing method based on the International Electrotechnical Commission 61000-4-6 standard. The conducted-noise source and equipment under test (EUT) are modeled in a circuit simulator. The conduction path, bulk current injection probe, and calibration jig are modeled using the 3D field simulator. A simple WPT system is designed and fabricated as the EUT for the CS test. The proposed method is successfully verified by comparing the voltage waveforms with measurement-based CS testing method. Additionally, as an application of the proposed method, a simulation-based evaluation of the conducted-noise filters is conducted. By using the proposed method, it is expected that the time and cost expense of setting up the test setup, as well as the testing procedure for the conventional measurement-based CS testing, will be drastically reduced. In addition, the proposed method can be used to estimate the conducted immunity of a system in the early stage of the design cycle prior to production.

2008 ◽  
Vol 1083 ◽  
Author(s):  
Andreas Frank ◽  
J.-P. Zoellner ◽  
Y. Sarov ◽  
Tz. Ivanov ◽  
I. Kuhnholz ◽  
...  

ABSTRACTIn this paper we present a novel method of nonlinear macro model of a cantilever for mixed domain simulation only with SPICE. Based on lumped elements of equivalent circuits a model is developed, which realizes a coupled electro-thermal-mechanical simulation including crosstalk effects. The model is verified with measurement and helps to class and solve crosstalk. With SPICE as electrical circuit simulator the cantilever array could be simulate in conjunction with the excitations and analysis electronics more detailed like the system level models and faster like FEM-simulation.


2015 ◽  
Vol 14 (1) ◽  
pp. 1-19 ◽  
Author(s):  
Rosa J. Meijer ◽  
Thijmen J.P. Krebs ◽  
Jelle J. Goeman

AbstractWe present a multiple testing method for hypotheses that are ordered in space or time. Given such hypotheses, the elementary hypotheses as well as regions of consecutive hypotheses are of interest. These region hypotheses not only have intrinsic meaning but testing them also has the advantage that (potentially small) signals across a region are combined in one test. Because the expected number and length of potentially interesting regions are usually not available beforehand, we propose a method that tests all possible region hypotheses as well as all individual hypotheses in a single multiple testing procedure that controls the familywise error rate. We start at testing the global null-hypothesis and when this hypothesis can be rejected we continue with further specifying the exact location/locations of the effect present. The method is implemented in the


Author(s):  
Tiantao Lu ◽  
Ankur Srivastava

This paper presents an electrical-thermal-reliability co-design technique for TSV-based 3D-ICs. Although TSV-based 3D-IC shows significant electrical performance improvement compared to traditional 2D circuit, researchers have reported strong electromigration (EM) in TSVs, which is induced by the thermal mechanical stress and the local temperature hotspot. We argue that rather than addressing 3D-IC’s EM issue after the IC designing phase, the designer should be aware of the circuit’s thermal and EM properties during the IC designing phase. For example, one should be aware that the TSVs establish vertical heat conduction path thus changing the chip’s thermal profile and also produce significant thermal mechanical stress to the nearby TSVs, which deteriorates other TSV’s EM reliability. Therefore, the number and location of TSVs play a crucial role in deciding 3D-IC’s electrical performance, changing its thermal profile, and affecting its EM-reliability. We investigate the TSV placement problem, in order to improve 3D-IC’s electrical performance and enhance its thermal-mechanical reliability. We derive and validate simple but accurate thermal and EM models for 3D-IC, which replace the current employed time-consuming finite-element-method (FEM) based simulation. Based on these models, we propose a systematic optimization flow to solve this TSV placement problem. Results show that compared to conventional performance-centered technique, our design methodology achieves 3.24x longer EM-lifetime, with only 1% performance degradation.


Author(s):  
Sudhakar Y. Reddy

Abstract This paper describes HIDER, a methodology that enables detailed simulation models to be used during the early stages of system design. HIDER uses a machine learning approach to form abstract models from the detailed models. The abstract models are used for multiple-objective optimization to obtain sets of non-dominated designs. The tradeoffs between design and performance attributes in the non-dominated sets are used to interactively refine the design space. A prototype design tool has been developed to assist the designer in easily forming abstract models, flexibly defining optimization problems, and interactively exploring and refining the design space. To demonstrate the practical applicability of this approach, the paper presents results from the application of HIDER to the system-level design of a wheel loader. In this demonstration, complex simulation models for cycle time evaluation and stability analysis are used together for early-stage exploration of design space.


2002 ◽  
Vol 2002.55 (0) ◽  
pp. 87-88
Author(s):  
Yumiko OKAGAWA ◽  
Yoshihito KUROSHIMA ◽  
Syoji HARADA

2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Jesse Austin-Breneman ◽  
Bo Yang Yu ◽  
Maria C. Yang

During the early stage design of large-scale engineering systems, design teams are challenged to balance a complex set of considerations. The established structured approaches for optimizing complex system designs offer strategies for achieving optimal solutions, but in practice suboptimal system-level results are often reached due to factors such as satisficing, ill-defined problems, or other project constraints. Twelve subsystem and system-level practitioners at a large aerospace organization were interviewed to understand the ways in which they integrate subsystems in their own work. Responses showed subsystem team members often presented conservative, worst-case scenarios to other subsystems when negotiating a tradeoff as a way of hedging against their own future needs. This practice of biased information passing, referred to informally by the practitioners as adding “margins,” is modeled in this paper with a series of optimization simulations. Three “bias” conditions were tested: no bias, a constant bias, and a bias which decreases with time. Results from the simulations show that biased information passing negatively affects both the number of iterations needed and the Pareto optimality of system-level solutions. Results are also compared to the interview responses and highlight several themes with respect to complex system design practice.


2019 ◽  
Vol 887 ◽  
pp. 353-360 ◽  
Author(s):  
Sören Eikemeier ◽  
Ardeshir Mahdavi ◽  
Robert Wimmer

To reduce the energy and resource consumption in the building sector this study is focusing on a design optimisation of life cycle oriented buildings. In order to optimise the performance of the buildings and in consequence also to achieve improved results for the mandatory Austrian energy certificate a simulation-based rapid design approach is used for the early stage design phase of the buildings, in particular for the architectural design of the buildings.Methods like the Window to Wall Ratio, at the very beginning of the design process, a parametric simulation with EnergyPlus or a more detailed optimisation approach with GenOpt are integrated in this study applied to example buildings. The results are showing that the method can be used in a circular approach for improving the heating demand of the Austrian energy certificate for this case study by more than 25 % compared to the preliminary design


Vibration ◽  
2020 ◽  
Vol 3 (3) ◽  
pp. 217-234
Author(s):  
Alexander D. Shaw ◽  
Thomas L. Hill ◽  
Simon A. Neild ◽  
Michael I. Friswell

The experimental characterisation of a nonlinear structure is a challenging process, particularly for multiple degree of freedom and continuous structures. Despite attracting much attention from academia, there is much work needed to create processes that can achieve characterisation in timescales suitable for industry, and a key to this is the design of the testing procedure itself. This work proposes a passive testing method that seeks a desired degree of resonance between forcing and response. In this manner, the process automatically seeks data that reveals greater detail of the underlying nonlinear normal modes than a traditional stepped sine method. Furthermore, the method can target multiple harmonics of the fundamental forcing frequency, and is therefore suitable for structures with complex modal interactions. The method is presented with some experimental examples, using a structure with a 3:1 internal resonance.


Author(s):  
Tong Zou ◽  
Sankaran Mahadevan ◽  
Akhil Sopory

A novel reliability-based design optimization (RBDO) method using simulation-based techniques for reliability assessments and efficient optimization approach is presented in this paper. In RBDO, model-based reliability analysis needs to be performed to calculate the probability of not satisfying a reliability constraint and the gradient of this probability with respect to each design variable. Among model-based methods, the most widely used in RBDO is the first-order reliability method (FORM). However, FORM could be inaccurate for nonlinear problems and is not applicable for system reliability problems. This paper develops an efficient optimization methodology to perform RBDO using simulation-based techniques. By combining analytical and simulation-based reliability methods, accurate probability of failure and sensitivity information is obtained. The use of simulation also enables both component and system-level reliabilities to be included in RBDO formulation. Instead of using a traditional RBDO formulation in which optimization and reliability computations are nested, a sequential approach is developed to greatly reduce the computational cost. The efficiency of the proposed RBDO approach is enhanced by using a multi-modal adaptive importance sampling technique for simulation-based reliability assessment; and by treating the inactive reliability constraints properly in optimization. A vehicle side impact problem is used to demonstrate the capabilities of the proposed method.


Author(s):  
Zhong Xingli ◽  
Ji Linhong ◽  
Li Sheng ◽  
Lu Yijia

Abstract Accurate simulation of metal casting press-forming process needs to consider mutual coupling effects in a number of different fields of physics subsystem. Hydraulic systems, control systems and mechanical systems are the most important subsystems among them. It is difficult to create various subsystems in detail in a single modeling tools, so co-simulation technology is used to take advantage of different tools to achieve the entire physical process of system-level simulation. The paper researched the co-simulation in the Abaqus software and the Matlab software based on FMI standard, considered fully the coupling effect between different systems, and simulated the metal casting press-forming process. The simulation results showed that co-simulation based on FMI standard can be well suited for multi-disciplinary co-simulation in complex mechanical model, and played a well-guiding role in the engineering design. The co-simulation would take more computation time than traditional simulation, but it can be achieved to research the integrated features of system and to reduce greatly experiments costs and prototype trial risks by using this technology.


Sign in / Sign up

Export Citation Format

Share Document