scholarly journals SDR Based Indoor Beacon Localization Using 3D Probabilistic Multipath Exploitation and Deep Learning

Electronics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1323 ◽  
Author(s):  
Donald L. Hall ◽  
Ram M. Narayanan ◽  
David M. Jenkins

Wireless indoor positioning systems (IPS) are ever-growing as traditional global positioning systems (GPS) are ineffective due to non-line-of-sight (NLoS) signal propagation. In this paper, we present a novel approach to learning three-dimensional (3D) multipath channel characteristics in a probabilistic manner for providing high performance indoor localization of wireless beacons. The proposed system employs a single triad dipole vector sensor (TDVS) for polarization diversity, a deep learning model deemed the denoising autoencoder to extract unique fingerprints from 3D multipath channel information, and a probabilistic k-nearest-neighbor (PkNN) to exploit the 3D multipath characteristics. The proposed system is the first to exploit 3D multipath channel characteristics for indoor wireless beacon localization via vector sensing methodologies, a software defined radio (SDR) platform, and multipath channel estimation.

Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5495
Author(s):  
Brahim El Boudani ◽  
Loizos Kanaris ◽  
Akis Kokkinis ◽  
Michalis Kyriacou ◽  
Christos Chrysoulas ◽  
...  

In the near future, the fifth-generation wireless technology is expected to be rolled out, offering low latency, high bandwidth and multiple antennas deployed in a single access point. This ecosystem will help further enhance various location-based scenarios such as assets tracking in smart factories, precise smart management of hydroponic indoor vertical farms and indoor way-finding in smart hospitals. Such a system will also integrate existing technologies like the Internet of Things (IoT), WiFi and other network infrastructures. In this respect, 5G precise indoor localization using heterogeneous IoT technologies (Zigbee, Raspberry Pi, Arduino, BLE, etc.) is a challenging research area. In this work, an experimental 5G testbed has been designed integrating C-RAN and IoT networks. This testbed is used to improve both vertical and horizontal localization (3D Localization) in a 5G IoT environment. To achieve this, we propose the DEep Learning-based co-operaTive Architecture (DELTA) machine learning model implemented on a 3D multi-layered fingerprint radiomap. The DELTA begins by estimating the 2D location. Then, the output is recursively used to predict the 3D location of a mobile station. This approach is going to benefit use cases such as 3D indoor navigation in multi-floor smart factories or in large complex buildings. Finally, we have observed that the proposed model has outperformed traditional algorithms such as Support Vector Machine (SVM) and K-Nearest Neighbor (KNN).


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2869 ◽  
Author(s):  
Yanzhao Wang ◽  
Chundi Xiu ◽  
Xuanli Zhang ◽  
Dongkai Yang

WiFi fingerprinting indoor positioning systems have extensive applied prospects. However, a vast amount of data in a particular environment has to be gathered to establish a fingerprinting database. Deficiencies of these systems are the lack of universality of multipath effects and a burden of heavy workload on fingerprint storage. Thus, this paper presents a novel Random Forest fingerprinting localization (RFFP) method using channel state information (CSI), which utilizes the Random Forest model trained in the offline stage as fingerprints in order to economize memory space and possess a good anti-multipath characteristic. Furthermore, a series of specific experiments are conducted in a microwave anechoic chamber and an office to detail the localization performance of RFFP with different wireless channel circumstances, system parameters, algorithms, and input datasets. In addition, compared with other algorithms including K-Nearest-Neighbor (KNN), Weighted K-Nearest-Neighbor (WKNN), REPTree, CART, and J48, the RFFP method provides far greater classification accuracy as well as lower mean location error. The proposed method offers outstanding comprehensive performance including accuracy, robustness, low workload, and better anti-multipath-fading.


2021 ◽  
Vol 22 (S3) ◽  
Author(s):  
Jun Meng ◽  
Qiang Kang ◽  
Zheng Chang ◽  
Yushi Luan

Abstract Background Long noncoding RNAs (lncRNAs) play an important role in regulating biological activities and their prediction is significant for exploring biological processes. Long short-term memory (LSTM) and convolutional neural network (CNN) can automatically extract and learn the abstract information from the encoded RNA sequences to avoid complex feature engineering. An ensemble model learns the information from multiple perspectives and shows better performance than a single model. It is feasible and interesting that the RNA sequence is considered as sentence and image to train LSTM and CNN respectively, and then the trained models are hybridized to predict lncRNAs. Up to present, there are various predictors for lncRNAs, but few of them are proposed for plant. A reliable and powerful predictor for plant lncRNAs is necessary. Results To boost the performance of predicting lncRNAs, this paper proposes a hybrid deep learning model based on two encoding styles (PlncRNA-HDeep), which does not require prior knowledge and only uses RNA sequences to train the models for predicting plant lncRNAs. It not only learns the diversified information from RNA sequences encoded by p-nucleotide and one-hot encodings, but also takes advantages of lncRNA-LSTM proposed in our previous study and CNN. The parameters are adjusted and three hybrid strategies are tested to maximize its performance. Experiment results show that PlncRNA-HDeep is more effective than lncRNA-LSTM and CNN and obtains 97.9% sensitivity, 95.1% precision, 96.5% accuracy and 96.5% F1 score on Zea mays dataset which are better than those of several shallow machine learning methods (support vector machine, random forest, k-nearest neighbor, decision tree, naive Bayes and logistic regression) and some existing tools (CNCI, PLEK, CPC2, LncADeep and lncRNAnet). Conclusions PlncRNA-HDeep is feasible and obtains the credible predictive results. It may also provide valuable references for other related research.


Author(s):  
Amal A. Moustafa ◽  
Ahmed Elnakib ◽  
Nihal F. F. Areed

This paper presents a methodology for Age-Invariant Face Recognition (AIFR), based on the optimization of deep learning features. The proposed method extracts deep learning features using transfer deep learning, extracted from the unprocessed face images. To optimize the extracted features, a Genetic Algorithm (GA) procedure is designed in order to select the most relevant features to the problem of identifying a person based on his/her facial images over different ages. For classification, K-Nearest Neighbor (KNN) classifiers with different distance metrics are investigated, i.e., Correlation, Euclidian, Cosine, and Manhattan distance metrics. Experimental results using a Manhattan distance KNN classifier achieves the best Rank-1 recognition rate of 86.2% and 96% on the standard FGNET and MORPH datasets, respectively. Compared to the state-of-the-art methods, our proposed method needs no preprocessing stages. In addition, the experiments show its privilege over other related methods.


Diagnostics ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1870
Author(s):  
Yaghoub Pourasad ◽  
Esmaeil Zarouri ◽  
Mohammad Salemizadeh Parizi ◽  
Amin Salih Mohammed

Breast cancer is one of the main causes of death among women worldwide. Early detection of this disease helps reduce the number of premature deaths. This research aims to design a method for identifying and diagnosing breast tumors based on ultrasound images. For this purpose, six techniques have been performed to detect and segment ultrasound images. Features of images are extracted using the fractal method. Moreover, k-nearest neighbor, support vector machine, decision tree, and Naïve Bayes classification techniques are used to classify images. Then, the convolutional neural network (CNN) architecture is designed to classify breast cancer based on ultrasound images directly. The presented model obtains the accuracy of the training set to 99.8%. Regarding the test results, this diagnosis validation is associated with 88.5% sensitivity. Based on the findings of this study, it can be concluded that the proposed high-potential CNN algorithm can be used to diagnose breast cancer from ultrasound images. The second presented CNN model can identify the original location of the tumor. The results show 92% of the images in the high-performance region with an AUC above 0.6. The proposed model can identify the tumor’s location and volume by morphological operations as a post-processing algorithm. These findings can also be used to monitor patients and prevent the growth of the infected area.


2016 ◽  
Vol 13 (5) ◽  
Author(s):  
Malik Yousef ◽  
Waleed Khalifa ◽  
Loai AbdAllah

SummaryThe performance of many learning and data mining algorithms depends critically on suitable metrics to assess efficiency over the input space. Learning a suitable metric from examples may, therefore, be the key to successful application of these algorithms. We have demonstrated that the k-nearest neighbor (kNN) classification can be significantly improved by learning a distance metric from labeled examples. The clustering ensemble is used to define the distance between points in respect to how they co-cluster. This distance is then used within the framework of the kNN algorithm to define a classifier named ensemble clustering kNN classifier (EC-kNN). In many instances in our experiments we achieved highest accuracy while SVM failed to perform as well. In this study, we compare the performance of a two-class classifier using EC-kNN with different one-class and two-class classifiers. The comparison was applied to seven different plant microRNA species considering eight feature selection methods. In this study, the averaged results show that EC-kNN outperforms all other methods employed here and previously published results for the same data. In conclusion, this study shows that the chosen classifier shows high performance when the distance metric is carefully chosen.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Renzhou Gui ◽  
Tongjie Chen ◽  
Han Nie

With the continuous development of science, more and more research results have proved that machine learning is capable of diagnosing and studying the major depressive disorder (MDD) in the brain. We propose a deep learning network with multibranch and local residual feedback, for four different types of functional magnetic resonance imaging (fMRI) data produced by depressed patients and control people under the condition of listening to positive- and negative-emotions music. We use the large convolution kernel of the same size as the correlation matrix to match the features and obtain the results of feature matching of 264 regions of interest (ROIs). Firstly, four-dimensional fMRI data are used to generate the two-dimensional correlation matrix of one person’s brain based on ROIs and then processed by the threshold value which is selected according to the characteristics of complex network and small-world network. After that, the deep learning model in this paper is compared with support vector machine (SVM), logistic regression (LR), k-nearest neighbor (kNN), a common deep neural network (DNN), and a deep convolutional neural network (CNN) for classification. Finally, we further calculate the matched ROIs from the intermediate results of our deep learning model which can help related fields further explore the pathogeny of depression patients.


2019 ◽  
Vol 9 (11) ◽  
pp. 2337 ◽  
Author(s):  
Imran Ashraf ◽  
Soojung Hur ◽  
Yongwan Park

Indoor localization systems are susceptible to higher errors and do not meet the current standards of indoor localization. Moreover, the performance of such approaches is limited by device dependence. The use of Wi-Fi makes the localization process vulnerable to dynamic factors and energy hungry. A multi-sensor fusion based indoor localization approach is proposed to overcome these issues. The proposed approach predicts pedestrians’ current location with smartphone sensors data alone. The proposed approach aims at mitigating the impact of device dependency on the localization accuracy and lowering the localization error in the magnetic field based localization systems. We trained a deep learning based convolutional neural network to recognize the indoor scene which helps to lower the localization error. The recognized scene is used to identify a specific floor and narrow the search space. The database built of magnetic field patterns helps to lower the device dependence. A modified K nearest neighbor (mKNN) is presented to calculate the pedestrian’s current location. The data from pedestrian dead reckoning further refines this location and an extended Kalman filter is implemented to this end. The performance of the proposed approach is tested with experiments on Galaxy S8 and LG G6 smartphones. The experimental results demonstrate that the proposed approach can achieve an accuracy of 1.04 m at 50 percent, regardless of the smartphone used for localization. The proposed mKNN outperforms K nearest neighbor approach, and mean, variance, and maximum errors are lower than those of KNN. Moreover, the proposed approach does not use Wi-Fi for localization and is more energy efficient than those of Wi-Fi based approaches. Experiments reveal that localization without scene recognition leads to higher errors.


2020 ◽  
Vol 10 (14) ◽  
pp. 4886 ◽  
Author(s):  
Mohammed Ali Mohammed Al-hababi ◽  
Muhammad Bilal Khan ◽  
Fadi Al-Turjman ◽  
Nan Zhao ◽  
Xiaodong Yang

Non-contact health care monitoring is a unique feature in the emerging 5G networks that is achieved by exploiting artificial intelligence (AI). The ratio of the number of health care problems and patients is increasing exponentially and creating burgeoning data. The integration of AI and Internet of things (IoT) systems enables us to increase the huge volume of data to be generated. The approach by which AI is applied to the IoT systems enhances the intelligence of the health care system. In post-surgery monitoring of the patient, timely consultation is essential before further loss. Unfortunately, even after the advice of the doctor to the patient, he/she may forget to perform the activity in the correct way, which may lead to complications in recovery. In this research, the idea is to design a non-contact sensing testbed using AI for the classification of post-surgery activities. Universal software-defined radio peripheral (USRP) is utilized to collect the data of spinal cord operated patients during weight lifting activity. The wireless channel state information (WCSI) is extracted by using orthogonal frequency division multiplexing (OFDM) technique. AI applies machine learning to classify the correct and wrong way of weight lifting activity that was considered for experimental analysis. The accuracy achieved by the proposed testbed by using a fine K-nearest neighbor (FKNN) algorithm is 99.6%.


Author(s):  
Mohamed Loey ◽  
Mukdad Rasheed Naman ◽  
Hala Helmy Zayed

Blood disease detection and diagnosis using blood cells images is an interesting and active research area in both the computer and medical fields. There are many techniques developed to examine blood samples to detect leukemia disease, these techniques are the traditional techniques and the deep learning (DL) technique. This article presents a survey on the different traditional techniques and DL approaches that have been employed in blood disease diagnosis based on blood cells images and to compare between the two approaches in quality of assessment, accuracy, cost and speed. This article covers 19 studies, 11 of these studies were in traditional techniques which used image processing and machine learning (ML) algorithms such as K-means, K-nearest neighbor (KNN), Naïve Bayes, Support Vector Machine (SVM), and 8 studies in advanced techniques which used DL, particularly Convolutional Neural Networks (CNNs) which is the most widely used in the field of blood image diseases detection since it is highly accurate, fast, and has the least cost. In addition, it analyzes a number of recent works that have been introduced in the field including the size of the dataset, the used methodologies, the obtained results, etc. Finally, based on the conducted study, it can be concluded that the proposed system CNN was achieving huge successes in the field whether regarding features extraction or classification task, time, accuracy, and had a lower cost in the detection of leukemia diseases.


Sign in / Sign up

Export Citation Format

Share Document