scholarly journals Emitter Signal Waveform Classification Based on Autocorrelation and Time-Frequency Analysis

Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1419 ◽  
Author(s):  
Zhiyuan Ma ◽  
Zhi Huang ◽  
Anni Lin ◽  
Guangming Huang

Emitter signal waveform recognition and classification are necessary survival techniques in electronic warfare systems. The emitters use various techniques for power management and complex intra-pulse modulations, which can create what looks like a noisy signal to an intercept receiver, so emitter signal waveform recognition at a low signal-to-noise ratio (SNR) has gained increased attention. In this study, we propose an autocorrelation feature image construction technique (ACFICT) combined with a convolutional neural network (CNN) to maintain the unique feature of each signal, and a structure optimization for CNN input layer called hybrid model is designed to achieve image enhancement of the signal autocorrelation, which is different from using a single image combined with CNN to complete classification. We demonstrate the performance of ACFICT by comparing feature images generated by different signal pre-processing algorithms, and the evaluation indicators are signal recognition rate, image stability degree, and image restoration degree. This paper simulates six types of the signals by combining ACFICT with three types of hybrid model, the simulation results compared with the literature show that the proposed methods not only has a high universality, but also better adapts to waveform recognition at low SNR environment. When the SNR is –6 dB, the overall recognition rate of the method reaches 88%.

Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 725 ◽  
Author(s):  
Jian Wan ◽  
Xin Yu ◽  
Qiang Guo

The electronic reconnaissance system is the operational guarantee and premise of electronic warfare. It is an important tool for intercepting radar signals and providing intelligence support for sensing the battlefield situation. In this paper, a radar waveform automatic identification system for detecting, tracking and locating low probability interception (LPI) radar is studied. The recognition system can recognize 12 different radar waveform: binary phase shift keying (Barker codes modulation), linear frequency modulation (LFM), Costas codes, polytime codes (T1, T2, T3, and T4), and polyphase codes (comprising Frank, P1, P2, P3 and P4). First, the system performs time–frequency transform on the LPI radar signal to obtain a two-dimensional time–frequency image. Then, the time–frequency image is preprocessed (binarization and size conversion). The preprocessed time–frequency image is then sent to the convolutional neural network (CNN) for training. After the training is completed, the features of the fully connected layer are extracted. Finally, the feature is sent to the tree structure-based machine learning process optimization (TPOT) classifier to realize offline training and online recognition. The experimental results show that the overall recognition rate of the system reaches 94.42% when the signal-to-noise ratio (SNR) is −4 dB.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Ji Li ◽  
Huiqiang Zhang ◽  
Jianping Ou ◽  
Wei Wang

In the increasingly complex electromagnetic environment of modern battlefields, how to quickly and accurately identify radar signals is a hotspot in the field of electronic countermeasures. In this paper, USRP N210, USRP-LW N210, and other general software radio peripherals are used to simulate the transmitting and receiving process of radar signals, and a total of 8 radar signals, namely, Barker, Frank, chaotic, P1, P2, P3, P4, and OFDM, are produced. The signal obtains time-frequency images (TFIs) through the Choi–Williams distribution function (CWD). According to the characteristics of the radar signal TFI, a global feature balance extraction module (GFBE) is designed. Then, a new IIF-Net convolutional neural network with fewer network parameters and less computation cost has been proposed. The signal-to-noise ratio (SNR) range is −10 to 6 dB in the experiments. The experiments show that when the SNR is higher than −2 dB, the signal recognition rate of IIF-Net is as high as 99.74%, and the signal recognition accuracy is still 92.36% when the SNR is −10 dB. Compared with other methods, IIF-Net has higher recognition rate and better robustness under low SNR.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 3103 ◽  
Author(s):  
Xuebao Wang ◽  
Gaoming Huang ◽  
Zhiwen Zhou ◽  
Wei Tian ◽  
Jialun Yao ◽  
...  

To cope with the complex electromagnetic environment and varied signal styles, a novel method based on the energy cumulant of short time Fourier transform and reinforced deep belief network is proposed to gain a higher correct recognition rate for radar emitter intra-pulse signals at a low signal-to-noise ratio. The energy cumulant of short time Fourier transform is attained by calculating the accumulations of each frequency sample value with the different time samples. Before this procedure, the time frequency distribution via short time Fourier transform is processed by base noise reduction. The reinforced deep belief network is proposed to employ the input feature vectors for training to achieve the radar emitter recognition and classification. Simulation results manifest that the proposed method is feasible and robust in radar emitter recognition even at a low SNR.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 526 ◽  
Author(s):  
Zhiyuan Ma ◽  
Zhi Huang ◽  
Anni Lin ◽  
Guangming Huang

Detecting and classifying the modulation type of the intercepted noisy LPI (low probability of intercept) radar signals in real-time is a necessary survival technique in the electronic intelligence systems. Most radar signals have been designed to have LPI properties; therefore, the LPI radar waveform recognition technique (LWRT) has recently gained increasing attention. In this paper, we propose a multiple feature images joint decision (MFIJD) model with two different feature extraction structures that fully extract the pixel feature to obtain the pre-classification results of each feature image for the non-stationary characteristics of most LPI radar signals. The core technology of this model is combining the short-time autocorrelation feature image, double short-time autocorrelation feature image and the original signal time-frequency image (TFI) simultaneously input into the hybrid model classifier, which is suitable for non-stationary signals, and it has higher universality. We demonstrate the performance of MFIJD by simulating 11 types of the signals defined in this paper and generating training sets and test sets. The comparison with the literature shows that the proposed methods not only has a high universality for LPI radar signals, but also better adapts to LPI radar waveform recognition at low SNR (signal to noise ratio) environment. The overall recognition rate of the method reaches 87.7% when the SNR is −6 dB.


Author(s):  
Dongmei Li ◽  
Zhiyuan Xu ◽  
Lei Gu ◽  
Lanxiang Zhu

AbstractThe twenty-first century is the era of electronic warfare and information warfare. The focus is of the battle between all parties. CEEMD can link the time domain and frequency domain, describe the two-dimensional time–frequency characteristics of the signal, and draw the time–frequency diagram of the signal, so as to reduce the noise signal and improve the signal-to-noise ratio of the signal. The purpose of this paper was to study how to adjust the signal square spectrum bandwidth ratio in the subject of identifying the intra-pulse modulation of radar, so as to solve the problem of identifying the type of radar intra-pulse modulation. The experimental results in this paper show that the decomposition result of EEMD is incomplete and the signal reconstruction error is larger. Compared with the previous two methods, not only the CEEMD method can effectively suppress modal aliasing, but also the decomposition result is complete; the signal reconstruction error is very small, and the decomposition results close to ideal value. The interleaving filter with a bandwidth ratio of 1:2 can divide the 100 GHz channel spacing into asymmetric output spectra with bandwidths greater than 60 GHz and 30 GHz, which effectively improves the current mix of 10 Gb/s and 40 Gb/s The bandwidth utilization of the system illustrates the success of the simulation experiment.


2020 ◽  
Vol 10 (7) ◽  
pp. 2218
Author(s):  
Tao Zhang ◽  
Yanzhang Geng ◽  
Jianhong Sun ◽  
Chen Jiao ◽  
Biyun Ding

This paper presents a unified speech enhancement system to remove both background noise and interfering speech in serious noise environments by jointly utilizing the parabolic reflector model and neural beamformer. First, the amplification property of paraboloid is discussed, which significantly improves the Signal-to-Noise Ratio (SNR) of a desired signal. Therefore, an appropriate paraboloid channel is analyzed and designed through the boundary element method. On the other hand, a time-frequency masking approach and a mask-based beamforming approach are discussed and incorporated in an enhancement system. It is worth noticing that signals provided by the paraboloid and the beamformer are exactly complementary. Finally, these signals are employed in a learning-based fusion framework to further improve the system performance in low SNR environments. Experiments demonstrate that our system is effective and robust in five different noisy conditions (speech interfered with factory, pink, destroyer engine, volvo, and babble noise), as well as in different noise levels. Compared with the original noisy speech, significant average objective metrics improvements are about Δ STOI = 0.28, Δ PESQ = 1.31, Δ fwSegSNR = 11.9.


Author(s):  
Lutao Liu ◽  
Xinyu Li

AbstractRecently, due to the wide application of low probability of intercept (LPI) radar, lots of recognition approaches about LPI radar signal modulations have been proposed. However, facing the increasingly complex electromagnetic environment, most existing methods have poor performance to identify different modulation types in low signal-to-noise ratio (SNR). This paper proposes an automatic recognition method for different LPI radar signal modulations. Firstly, time-domain signals are converted to time-frequency images (TFIs) by smooth pseudo-Wigner–Ville distribution. Then, these TFIs are fed into a designed triplet convolutional neural network (TCNN) to obtain high-dimensional feature vectors. In essence, TCNN is a CNN network that triplet loss is adopted to optimize parameters of the network in the training process. The participation of triplet loss can ensure that the distance between samples in different classes is greater than that between samples with the same label, improving the discriminability of TCNN. Eventually, a fully connected neural network is employed as the classifier to recognize different modulation types. Simulation shows that the overall recognition success rate can achieve 94% at − 10 dB, which proves the proposed method has a strong discriminating capability for the recognition of different LPI radar signal modulations, even under low SNR.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7474
Author(s):  
Yongjiang Mao ◽  
Wenjuan Ren ◽  
Zhanpeng Yang

With the development of signal processing technology and the use of new radar systems, signal aliasing and electronic interference have occurred in space. The electromagnetic signals have become extremely complicated in their current applications in space, causing difficult problems in terms of accurately identifying radar-modulated signals in low signal-to-noise ratio (SNR) environments. To address this problem, in this paper, we propose an intelligent recognition method that combines time–frequency (T–F) analysis and a deep neural network to identify radar modulation signals. The T–F analysis of the complex Morlet wavelet transform (CMWT) method is used to extract the characteristics of signals and obtain the T–F images. Adaptive filtering and morphological processing are used in T–F image enhancement to reduce the interference of noise on signal characteristics. A deep neural network with the channel-separable ResNet (Sep-ResNet) is used to classify enhanced T–F images. The proposed method completes high-accuracy intelligent recognition of radar-modulated signals in a low-SNR environment. When the SNR is −10 dB, the probability of successful recognition (PSR) is 93.44%.


2015 ◽  
Vol 719-720 ◽  
pp. 1171-1176
Author(s):  
Guang Ping Zhu ◽  
Hui Sun

For solving the problem which the performance of detection was reduced in the low signal to noise ratio (SNR) using Wigner-Ville Hough transform (WHT), the method of XWVD adaptive mean Ridgelet transform filtering (XWVD-M-FRIT) was proposed. In this method, due to the power distribution of signal is different from noise or reverberation in time-frequency domain, so designed adaptive axial mean filter, then using Ridgelet transform filtering to restrain noise or reverberation. At last, it is to detect the signal using Hough transform. The results of real and simulation experiments showed, compared with WHT, in the low SNR the new method is feasible to restrain noise or reverberation in time-frequency domain for improving the performance of signal detection. furthermore, the performance of varying implement of adaptive mean and Ridgelet transform filtering were compared.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Runlan Tian ◽  
Guoyi Zhang ◽  
Rui Zhou ◽  
Wei Dong

A novel effective detection method is proposed for electronic intelligence (ELINT) systems detecting polyphase codes radar signal in the low signal-to-noise ratio (SNR) scenario. The core idea of the proposed method is first to calculate the time-frequency distribution of polyphase codes radar signals via Wigner-Ville distribution (WVD); then the modified Hough transform (HT) is employed to cumulate all the energy of WVD’s ridges effectively to achieve signal detection. Compared with the generalised Wigner Hough transform (GWHT) method, the proposed method has a superior performance in low SNR and is not sensitive to the code type. Simulation results verify the validity of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document