scholarly journals A New Single-Phase Direct Frequency Controller Having Reduced Switching Count without Zero-Crossing Detector for Induction Heating System

Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 430
Author(s):  
Naveed Ashraf ◽  
Tahir Izhar ◽  
Ghulam Abbas ◽  
Ahmed Bilal Awan ◽  
Ali S. Alghamdi ◽  
...  

Induction heating (IH) is an environmentally friendly solution for heating and melting processes. The required high-frequency magnetic field is accomplished through frequency controllers. Direct frequency controllers (DFC) are preferred to dual converters as they have low conversion losses, compact size, and simple circuit arrangement due to low component count. Numerous frequency controllers with complex switching algorithms are employed in the induction heating process. They have a complicated circuit arrangement, and complex control as their switching sequences have to synchronize with source voltage that requires the zero-crossing detection of the input voltage. They also have a shoot-through problem and poor power quality. Therefore, this research proposes a novel frequency controller with a low count of six controlled switching devices without a zero-crossing detector (ZCD) having a simple control arrangement. The required switching signals are simply generated by using any pulse-width-modulated (PWM) generator. The performance of the proposed topology is verified through simulation results obtained using the MATLAB/Simulink environment and experimental setup.

2020 ◽  
Vol 863 ◽  
pp. 97-102
Author(s):  
Huynh Duc Thuan ◽  
Tran Anh Son ◽  
Pham Son Minh

In this paper, an induction heating system was applied to the heating stage in the injection molding process. Through simulation and experiment, the heating process was estimated by the temperature distribution and the heating rate. In the simulation, the mold temperature was increased from 30°C to 180°C in 9 s. Therefore, the heating rate was higher than 16°C/s, which represents a positive result in the field of mold heating. Additionally, the temperature distribution revealed that the higher temperature is concentrated on the gate area, while the outside of the mold cavity is at a lower temperature. The same parameters were applied to both the experiment and the simulation, and the results were in good agreement.


2021 ◽  
Vol 11 (18) ◽  
pp. 8325
Author(s):  
Naveed Ashraf ◽  
Ghulam Abbas ◽  
Nasim Ullah ◽  
Ahmad Aziz Alahmadi ◽  
Ahmed Bilal Awan ◽  
...  

The induction heating process at a domestic level is getting attention nowadays as this power converting topology ensures clean, reliable, flexible, and fast operation. The low input frequency is converted to required regulated high output frequency with indirect and direct power converting approaches. The circuit and control complexity and high conversion losses associated with indirect power converting approaches lower their uses for domestic induction systems. The direct ac-ac power conversion approach is one of the viable solutions for low and medium power level loads, especially for domestic induction heating loads. The circuit complexity, cost, and conversion losses of the direct power converting systems depend on the number of the controlled switching devices as each controlled switch requires one gate driving circuit and one isolated dc supply. Simplified pulse width modulation (PWM) switching control also lower their control effort. Therefore, in this article, a simplified direct ac-ac power converting approach is introduced for a high-frequency domestic induction heating system. Here, the regulation of the high output frequency is achieved by simply cascading the single-phase full-bridge rectifier with a full-bridge inverter with a simple control strategy. The characteristics of the developed topology are validated through simulation results of the Simulink-based platform and practical results of the developed practical setup.


Author(s):  
Tianxing Zhu ◽  
Xuekun Li ◽  
Feng Li ◽  
Yiming (Kevin) Rong

Induction heating is frequently used in the metalworking industry to heat metals for hardening, soldering, brazing, tempering and annealing. Due to its complexity, the using of simulation to analyze the induction heating process could become very advantageous both in design and economic aspects. In this paper, an analytical model is established using commercial package Cedrat Flux® 10.3, and the model is verified by the experiments. After the establishment of analytical model, an analysis on the effect of workpiece magnetic permeability to the modeling was conducted.


2019 ◽  
Vol 2 (1) ◽  
pp. 29-39 ◽  
Author(s):  
S. G. Konesev ◽  
P. A. Khlyupin

Introduction: the systems of thermal effects on thermo-dependent, viscous and highly viscous liquids under conditions of the Arctic and the Extreme North are considered. Low efficiency and danger of heating systems based on burned hydrocarbons, heated liquids and steam are shown. Electrothermal heating systems used to maintain thermo-dependent fluids in a fluid state are considered. The evaluation of the effectiveness of the application of the most common electrothermal system — heating cables (tapes). The most effective electrothermal system based on induction technologies has been determined. Materials and methods: considered methods of thermal exposure to maintain the fluid properties of thermo-dependent fluids at low extreme temperatures. Results: presents an induction heating system and options for its implementation in the Extreme North and the Arctic. Conclusions: induction heating system to minimize loss of product quality, improve the system performance under changing process conditions, eliminate fire product, to reduce the influence of the human factor.


2018 ◽  
Vol 18 (3) ◽  
pp. 408-419
Author(s):  
A J shokri ◽  
M H Tavakoli ◽  
A Sabouri Dodaran ◽  
M S Akhondi Khezrabad ◽  
◽  
...  

Author(s):  
Arnulfo Pérez-Pérez ◽  
Jorge Sergio Téllez-Martínez ◽  
Gregorio Hortelano-Capetillo ◽  
Jesús Israel Barraza-Fierro

In this work, the dimensions of a furnace for melting of ferrous alloys were determined. The furnace has an electromagnetic induction heating system. In addition, the parameters of electrical power supply such as frequency and power were calculated. A 5kg cast steel mass with a density of 7.81 kg / dm3 was proposed. This corresponds to a crucible volume of 0.641 dm3. The frequency was obtained from tables, which take into account the diameter of the crucible, and its value was 1 KHz. The energy consumption was determined with the heat required to bring the steel to the temperature of 1740 K, the energy losses through the walls, bottom and top of the crucible. This value was divided between the heating time (30 minutes) and resulted in a power of 4.5 KW. The development of the calculations shows that the induction heating is an efficient process and allows a fast melting of ferrous alloys.


2021 ◽  
Vol 1047 (1) ◽  
pp. 012027
Author(s):  
A V Milov ◽  
V S Tynchenko ◽  
S O Kurashkin ◽  
V E Petrenko ◽  
D V Rogova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document