scholarly journals Deep Learning Applications with Practical Measured Results in Electronics Industries

Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 501 ◽  
Author(s):  
Mong-Fong Horng ◽  
Hsu-Yang Kung ◽  
Chi-Hua Chen ◽  
Feng-Jang Hwang

This editorial introduces the Special Issue, entitled “Deep Learning Applications with Practical Measured Results in Electronics Industries”, of Electronics. Topics covered in this issue include four main parts: (I) environmental information analyses and predictions, (II) unmanned aerial vehicle (UAV) and object tracking applications, (III) measurement and denoising techniques, and (IV) recommendation systems and education systems. Four papers on environmental information analyses and predictions are as follows: (1) “A Data-Driven Short-Term Forecasting Model for Offshore Wind Speed Prediction Based on Computational Intelligence” by Panapakidis et al.; (2) “Multivariate Temporal Convolutional Network: A Deep Neural Networks Approach for Multivariate Time Series Forecasting” by Wan et al.; (3) “Modeling and Analysis of Adaptive Temperature Compensation for Humidity Sensors” by Xu et al.; (4) “An Image Compression Method for Video Surveillance System in Underground Mines Based on Residual Networks and Discrete Wavelet Transform” by Zhang et al. Three papers on UAV and object tracking applications are as follows: (1) “Trajectory Planning Algorithm of UAV Based on System Positioning Accuracy Constraints” by Zhou et al.; (2) “OTL-Classifier: Towards Imaging Processing for Future Unmanned Overhead Transmission Line Maintenance” by Zhang et al.; (3) “Model Update Strategies about Object Tracking: A State of the Art Review” by Wang et al. Five papers on measurement and denoising techniques are as follows: (1) “Characterization and Correction of the Geometric Errors in Using Confocal Microscope for Extended Topography Measurement. Part I: Models, Algorithms Development and Validation” by Wang et al.; (2) “Characterization and Correction of the Geometric Errors Using a Confocal Microscope for Extended Topography Measurement, Part II: Experimental Study and Uncertainty Evaluation” by Wang et al.; (3) “Deep Transfer HSI Classification Method Based on Information Measure and Optimal Neighborhood Noise Reduction” by Lin et al.; (4) “Quality Assessment of Tire Shearography Images via Ensemble Hybrid Faster Region-Based ConvNets” by Chang et al.; (5) “High-Resolution Image Inpainting Based on Multi-Scale Neural Network” by Sun et al. Two papers on recommendation systems and education systems are as follows: (1) “Deep Learning-Enhanced Framework for Performance Evaluation of a Recommending Interface with Varied Recommendation Position and Intensity Based on Eye-Tracking Equipment Data Processing” by Sulikowski et al. and (2) “Generative Adversarial Network Based Neural Audio Caption Model for Oral Evaluation” by Zhang et al.

2020 ◽  
Author(s):  
Xu Cheng ◽  
Chen Song ◽  
Yongxiang Gu ◽  
Beijing Chen ◽  
Lin Zhou ◽  
...  

Abstract Artificial intelligence has been widely studied on solving intelligent surveillance analysis and security problems in recent years. Although many multimedia security approaches have been proposed by using deep learning network model, there are still some challenges on their performances which deserve in-depth research. On one hand, high computational complexity of current deep learning methods makes it hard to be applied to real-time scenario. On the other hand, it is difficult to obtain the specific features of a video by fine-tuning the network online with the object state of the first frame, which fails to capture rich appearance variations of the object. To solve above two issues, in this paper, an effective object tracking method with learning attention is proposed to achieve the object localization and reduce the training time in adversarial learning framework. First, a prediction network is designed to track the object in video sequences. The object positions of the first ten frames are employed to fine-tune prediction network, which can fully mine a specific features of an object. Second, the prediction network is integrated into the generative adversarial network framework, which randomly generates masks to capture object appearance variations via adaptively dropout input features. Third, we present a spatial attention mechanism to improve the tracking performance. The proposed network can identify the mask that maintains the most robust features of the objects over a long temporal span. Extensive experiments on two large-scale benchmarks demonstrate that the proposed algorithm performs favorably against state-of-the-art methods.


2020 ◽  
Author(s):  
Xu Cheng ◽  
Chen Song ◽  
Yongxiang Gu ◽  
Beijing Chen

Abstract Artificial intelligence has been widely studied on solving intelligent surveillance analysis and security problems in recent years. Although many multimedia security approaches have been proposed by using deep learning network model, there are still some challenges on their performances which deserve in-depth research. On one hand, high computational complexity of current deep learning methods makes it hard to be applied to real-time scenario. On the other hand, it is difficult to obtain the specific features of a video by fine-tuning the network online with the object state of the first frame, which fails to capture rich appearance variations of the object. To solve above two issues, in this paper, an effective object tracking method with learning attention is proposed to achieve the object localization and reduce the training time in adversarial learning framework. First, a prediction network is designed to track the object in video sequences. The object positions of the first ten frames are employed to fine-tune prediction network, which can fully mine a specific features of an object. Second, the prediction network is integrated into the generative adversarial network framework, which randomly generates masks to capture object appearance variations via adaptively dropout input features. Third, we present a spatial attention mechanism to improve the tracking performance. The proposed network can identify the mask that maintains the most robust features of the objects over a long temporal span. Extensive experiments on two large-scale benchmarks demonstrate that the proposed algorithm performs favorably against state-of-the-art methods.


2020 ◽  
Author(s):  
Xu Cheng ◽  
Chen Song ◽  
Yongxiang Gu ◽  
Beijing Chen

Abstract Artificial intelligence has been widely studied on solving intelligent surveillance analysis and security problems in recent years. Although many multimedia security approaches have been proposed by using deep learning network model, there are still some challenges on their performances which deserve in-depth research. On one hand, high computational complexity of current deep learning methods makes it hard to be applied to real-time scenario. On the other hand, it is difficult to obtain the specific features of a video by fine-tuning the network online with the object state of the first frame, which fails to capture rich appearance variations of the object. To solve above two issues, in this paper, an effective object tracking method with learning attention is proposed to achieve the object localization and reduce the training time in adversarial learning framework. First, a prediction network is designed to track the object in video sequences. The object positions of the first ten frames are employed to fine-tune prediction network, which can fully mine a specific features of an object. Second, the prediction network is integrated into the generative adversarial network framework, which randomly generates masks to capture object appearance variations via adaptively dropout input features. Third, we present a spatial attention mechanism to improve the tracking performance. The proposed network can identify the mask that maintains the most robust features of the objects over a long temporal span. Extensive experiments on two large-scale benchmarks demonstrate that the proposed algorithm performs favorably against state-of-the-art methods.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Xu Cheng ◽  
Chen Song ◽  
Yongxiang Gu ◽  
Beijing Chen

Abstract Artificial intelligence has been widely studied on solving intelligent surveillance analysis and security problems in recent years. Although many multimedia security approaches have been proposed by using deep learning network model, there are still some challenges on their performances which deserve in-depth research. On the one hand, high computational complexity of current deep learning methods makes it hard to be applied to real-time scenario. On the other hand, it is difficult to obtain the specific features of a video by fine-tuning the network online with the object state of the first frame, which fails to capture rich appearance variations of the object. To solve above two issues, in this paper, an effective object tracking method with learning attention is proposed to achieve the object localization and reduce the training time in adversarial learning framework. First, a prediction network is designed to track the object in video sequences. The object positions of the first ten frames are employed to fine-tune prediction network, which can fully mine a specific features of an object. Second, the prediction network is integrated into the generative adversarial network framework, which randomly generates masks to capture object appearance variations via adaptively dropout input features. Third, we present a spatial attention mechanism to improve the tracking performance. The proposed network can identify the mask that maintains the most robust features of the objects over a long temporal span. Extensive experiments on two large-scale benchmarks demonstrate that the proposed algorithm performs favorably against state-of-the-art methods.


2020 ◽  
Vol 31 (6) ◽  
pp. 681-689
Author(s):  
Jalal Mirakhorli ◽  
Hamidreza Amindavar ◽  
Mojgan Mirakhorli

AbstractFunctional magnetic resonance imaging a neuroimaging technique which is used in brain disorders and dysfunction studies, has been improved in recent years by mapping the topology of the brain connections, named connectopic mapping. Based on the fact that healthy and unhealthy brain regions and functions differ slightly, studying the complex topology of the functional and structural networks in the human brain is too complicated considering the growth of evaluation measures. One of the applications of irregular graph deep learning is to analyze the human cognitive functions related to the gene expression and related distributed spatial patterns. Since a variety of brain solutions can be dynamically held in the neuronal networks of the brain with different activity patterns and functional connectivity, both node-centric and graph-centric tasks are involved in this application. In this study, we used an individual generative model and high order graph analysis for the region of interest recognition areas of the brain with abnormal connection during performing certain tasks and resting-state or decompose irregular observations. Accordingly, a high order framework of Variational Graph Autoencoder with a Gaussian distributer was proposed in the paper to analyze the functional data in brain imaging studies in which Generative Adversarial Network is employed for optimizing the latent space in the process of learning strong non-rigid graphs among large scale data. Furthermore, the possible modes of correlations were distinguished in abnormal brain connections. Our goal was to find the degree of correlation between the affected regions and their simultaneous occurrence over time. We can take advantage of this to diagnose brain diseases or show the ability of the nervous system to modify brain topology at all angles and brain plasticity according to input stimuli. In this study, we particularly focused on Alzheimer’s disease.


Information ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 249
Author(s):  
Xin Jin ◽  
Yuanwen Zou ◽  
Zhongbing Huang

The cell cycle is an important process in cellular life. In recent years, some image processing methods have been developed to determine the cell cycle stages of individual cells. However, in most of these methods, cells have to be segmented, and their features need to be extracted. During feature extraction, some important information may be lost, resulting in lower classification accuracy. Thus, we used a deep learning method to retain all cell features. In order to solve the problems surrounding insufficient numbers of original images and the imbalanced distribution of original images, we used the Wasserstein generative adversarial network-gradient penalty (WGAN-GP) for data augmentation. At the same time, a residual network (ResNet) was used for image classification. ResNet is one of the most used deep learning classification networks. The classification accuracy of cell cycle images was achieved more effectively with our method, reaching 83.88%. Compared with an accuracy of 79.40% in previous experiments, our accuracy increased by 4.48%. Another dataset was used to verify the effect of our model and, compared with the accuracy from previous results, our accuracy increased by 12.52%. The results showed that our new cell cycle image classification system based on WGAN-GP and ResNet is useful for the classification of imbalanced images. Moreover, our method could potentially solve the low classification accuracy in biomedical images caused by insufficient numbers of original images and the imbalanced distribution of original images.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 4953
Author(s):  
Sara Al-Emadi ◽  
Abdulla Al-Ali ◽  
Abdulaziz Al-Ali

Drones are becoming increasingly popular not only for recreational purposes but in day-to-day applications in engineering, medicine, logistics, security and others. In addition to their useful applications, an alarming concern in regard to the physical infrastructure security, safety and privacy has arisen due to the potential of their use in malicious activities. To address this problem, we propose a novel solution that automates the drone detection and identification processes using a drone’s acoustic features with different deep learning algorithms. However, the lack of acoustic drone datasets hinders the ability to implement an effective solution. In this paper, we aim to fill this gap by introducing a hybrid drone acoustic dataset composed of recorded drone audio clips and artificially generated drone audio samples using a state-of-the-art deep learning technique known as the Generative Adversarial Network. Furthermore, we examine the effectiveness of using drone audio with different deep learning algorithms, namely, the Convolutional Neural Network, the Recurrent Neural Network and the Convolutional Recurrent Neural Network in drone detection and identification. Moreover, we investigate the impact of our proposed hybrid dataset in drone detection. Our findings prove the advantage of using deep learning techniques for drone detection and identification while confirming our hypothesis on the benefits of using the Generative Adversarial Networks to generate real-like drone audio clips with an aim of enhancing the detection of new and unfamiliar drones.


Author(s):  
Dimitrios Meimetis ◽  
Ioannis Daramouskas ◽  
Isidoros Perikos ◽  
Ioannis Hatzilygeroudis

2021 ◽  
Vol 13 (10) ◽  
pp. 1953
Author(s):  
Seyed Majid Azimi ◽  
Maximilian Kraus ◽  
Reza Bahmanyar ◽  
Peter Reinartz

In this paper, we address various challenges in multi-pedestrian and vehicle tracking in high-resolution aerial imagery by intensive evaluation of a number of traditional and Deep Learning based Single- and Multi-Object Tracking methods. We also describe our proposed Deep Learning based Multi-Object Tracking method AerialMPTNet that fuses appearance, temporal, and graphical information using a Siamese Neural Network, a Long Short-Term Memory, and a Graph Convolutional Neural Network module for more accurate and stable tracking. Moreover, we investigate the influence of the Squeeze-and-Excitation layers and Online Hard Example Mining on the performance of AerialMPTNet. To the best of our knowledge, we are the first to use these two for regression-based Multi-Object Tracking. Additionally, we studied and compared the L1 and Huber loss functions. In our experiments, we extensively evaluate AerialMPTNet on three aerial Multi-Object Tracking datasets, namely AerialMPT and KIT AIS pedestrian and vehicle datasets. Qualitative and quantitative results show that AerialMPTNet outperforms all previous methods for the pedestrian datasets and achieves competitive results for the vehicle dataset. In addition, Long Short-Term Memory and Graph Convolutional Neural Network modules enhance the tracking performance. Moreover, using Squeeze-and-Excitation and Online Hard Example Mining significantly helps for some cases while degrades the results for other cases. In addition, according to the results, L1 yields better results with respect to Huber loss for most of the scenarios. The presented results provide a deep insight into challenges and opportunities of the aerial Multi-Object Tracking domain, paving the way for future research.


Sign in / Sign up

Export Citation Format

Share Document