scholarly journals Circuit Topologies for MOS-Type Gas Sensor

Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 525
Author(s):  
Javier Cervera Gómez ◽  
Jose Pelegri-Sebastia ◽  
Rafael Lajara

Metal Oxide Semiconductor or MOS-type gas sensors are resistive sensors which can detect different reducible or volatile gases in atmospheres with oxygen. These gas sensors have been used in different areas such as food and drink industries or healthcare, among others. In this type of sensor, the resistance value changes when it detects certain types of gases. Due to the electrical characteristics, the sensors need a conditioning circuit to transform and acquire the data. Four different electronic topologies, two different MOS-type gas sensors, and different concentrations of a gas substance are presented and compared in this paper. The study and experimental analysis of the properties of each of the designed topology allows designers to make a choice of the best circuit for a specific application depending on the situation, considering the required power, noise, linearity, and number of sensors to be used. This study will give more freedom of choice, the more adequate electronic conditioning topology for different applications where MOS-type sensors are used, obtaining the best accuracy.

Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 647
Author(s):  
Tobias Baur ◽  
Johannes Amann ◽  
Caroline Schultealbert ◽  
Andreas Schütze

More and more metal oxide semiconductor (MOS) gas sensors with digital interfaces are entering the market for indoor air quality (IAQ) monitoring. These sensors are intended to measure volatile organic compounds (VOCs) in indoor air, an important air quality factor. However, their standard operating mode often does not make full use of their true capabilities. More sophisticated operation modes, extensive calibration and advanced data evaluation can significantly improve VOC measurements and, furthermore, achieve selective measurements of single gases or at least types of VOCs. This study provides an overview of the potential and limits of MOS gas sensors for IAQ monitoring using temperature cycled operation (TCO), calibration with randomized exposure and data-based models trained with advanced machine learning. After lab calibration, a commercial digital gas sensor with four different gas-sensitive layers was tested in the field over several weeks. In addition to monitoring normal ambient air, release tests were performed with compounds that were included in the lab calibration, but also with additional VOCs. The tests were accompanied by different analytical systems (GC-MS with Tenax sampling, mobile GC-PID and GC-RCP). The results show quantitative agreement between analytical systems and the MOS gas sensor system. The study shows that MOS sensors are highly suitable for determining the overall VOC concentrations with high temporal resolution and, with some restrictions, also for selective measurements of individual components.


Sign in / Sign up

Export Citation Format

Share Document