scholarly journals A User Cooperation Approach for Interference Cancellation in FDD Massive MIMO Systems

Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1679
Author(s):  
Mehran Behjati ◽  
Rosdiadee Nordin ◽  
Mohammed H. Alsharif

The performance of a massive multi-user Multi-Input Multi-Output (MIMO) system, operating in Frequency Division Duplex (FDD) mode, severely degrades under imperfect Channel State Information (CSI). Among the main challenges toward the acquisition of sufficiently accurate CSI at the transmitter is the issue of enormous CSI feedback overhead. In this paper, a novel interference cancellation strategy is proposed to alleviate the overhead. The concept of a device-to-device based interference cancellation strategy was hinted in some prior works but has not been fully exploited in the multi-user MIMO systems, especially when the number of antennas becomes large. Hence, this paper aims to exploit the potential of User Equipment (UE) cooperation to reduce the dependency of precoder at the transmitter to the accuracy of CSI. To do so, adjacent pieces of UE that experience correlated CSI are clustered in a similar group, jointly adjusting their receive antenna combining the weight vector to maximize the channel vector orthogonality. Simulation results show that the proposed strategy reduces the dependency of system performance on the accuracy of CSI feedback; moreover, compared to the conventional limited feedback strategy, a larger number of antennas can be deployed at the transmitter.

Author(s):  
Yujiao He ◽  
Jianing Zhao ◽  
Lijuan Tao ◽  
Fuyu Hou ◽  
Wei Jia

This paper proposes an improved port modulation (PM) method which can be applied to the multiuser (MU) massive multiple-input multiple-output (MIMO) system. The precoding process of the improved PM can be divided into two parts: port precoding and MU precoding. The methods of the precoding and detection are provided and the performance of the proposed improved PM is simulated and analyzed. Simulation results show that the proposed improved PM system can achieve a satisfying bit error rate (BER) performance with a cutdown channel state information (CSI) feedback.


Author(s):  
Simon Wissam Tarbouche ◽  
Abdel-Nasser Assimi

Generalized frequency division multiplexing (GFDM) is a prominent candidate to be used by the mobile Fifth Generation (5G) physical layer. Nevertheless, the integration of GFDM with Spatial Multiplexing (SM) MIMO system is essential to fulfill the data rate requirements. SM detection of MIMO-GFDM becomes a more challenging topic because of ICI and ISI due to the non-orthogonal nature of GFDM, along with IAI. In this article, the authors propose a system that combines the Offset-Quadrature Amplitude Modulation (OQAM) with GFDM to mitigate self-induced interference, by using a simple Matched Filter (MF) detector and minimum additional processing at the receiver. Simulation results show a considerable achieved improvement in BER by the proposed OQAM/GFDM compared to QAM/GFDM when using MMSE-based Ordered Successive Interference Cancellation (OSIC) detector. Furthermore, this system is unaffected by the roll-off factor variations of used pulse-shaping filters.


Author(s):  
M., Sunil Kumar ◽  
C. K., Narayanappa ◽  
M. Nagendra Kumar

Researchers and industry experts are looking for the availability of large bandwidth spectrum due to high market demands and expectations for high data rates. And Millimeter Wave technology possess characteristics to fulfill these requirements. However, due to high power consumption and channel estimation requirements, massive MIMO is utilized in coordination with Millimeter Wave technology. Besides, the performance of mm-WAVE MIMO system is measured by the effective estimation of Channel State Information (CSI) which is a critical and challenging process. Therefore, a Sparse Coding based Reconstruction Learning (SCL) mechanism is presented to efficiently estimate Channel State Information (CSI) for Millimeter-WAVE massive Multiple Input Multiple Output (MIMO) system. For efficiency enhancement, joint sparse learning problem is formulated and a denoised joint sparsity learning matrix is obtained using proposed SCL mechanism. Here, optimization of joint sparse learning problem is summarized by reducing inconsistent and overfitting errors. The proposed SCL mechanism performs well under high as well as low SNR conditions. Moreover, joint sparse coding algorithm is utilized for efficient sparse signal restoration. The performance of proposed SCL mechanism is efficiently measured against several state-of-art-algorithms in terms of energy efficiency, NMSE, channel capacity etc.


2005 ◽  
Vol 2005 (15) ◽  
pp. 2461-2471 ◽  
Author(s):  
Ejaz Khan ◽  
Conor Heneghan

It is well known that the use of antenna arrays at both sides of communication link can result in high channel capacities provided that the propagation medium is rich scattering. In most previous works presented on MIMO wireless structures, Rayleigh fading conditions were considered. In this work, the capacity of MIMO systems under fully correlated (i.e., correlations between rows and columns of channel matrix) fading is considered. We use replica method and character expansions to calculate the capacity of correlated MIMO channel in closed form. In our calculations, it is assumed that the receiver has perfect channel state information (CSI) but no such information is available at the transmitter.


2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Chaowei Wang ◽  
Weidong Wang ◽  
Cheng Wang ◽  
Shuai Wang ◽  
Yang Yu

Antenna selection has been regarded as an effective method to acquire the diversity benefits of multiple antennas while potentially reduce hardware costs. This paper focuses on receive antenna selection. According to the proportion between the numbers of total receive antennas and selected antennas and the influence of each antenna on system capacity, we propose a fast adaptive antenna selection algorithm for wireless multiple-input multiple-output (MIMO) systems. Mathematical analysis and numerical results show that our algorithm significantly reduces the computational complexity and memory requirement and achieves considerable system capacity gain compared with the optimal selection technique in the same time.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Pawinee Meerasri ◽  
Peerapong Uthansakul ◽  
Monthippa Uthansakul

The challenge of a full-duplex single-channel system is the method to transmit and receive signals simultaneously at the same time and on the same frequency. Consequently, a critical issue involved in such an operation is the resulting self-interference. Moreover, for MIMO system, the full-duplex single-channel system is subjected to the very strong self-interference signals due to multiple transmitting and receiving antennas. So far in the pieces of literature, there have not been any suitable techniques presented to reduce the self-interference for full-duplex single-channel MIMO systems. This paper initially proposes the method to cancel the self-interference by utilizing the mutual-coupling model for self-interference cancellation. The interference can be eliminated by using a preknown interference, that is, the mutual-coupling signals. The results indicate that the channel capacity performance of the proposed technique can significantly be improved due to the reduction of the self-interference power. The measurement results indicate that the proposed MIMO system can suppress the self-interference and mutual-interference signals with the reduction of 31 dB received power.


2020 ◽  
Author(s):  
Mostafa Hussien

In a frequency division duplexing multiple-input multiple-output (FDD-MIMO) system, the user equipment (UE) send the downlink channel state information (CSI) to the base station for performance improvement. However, with the growing complexity of MIMO systems, this feedback becomes expensive and has a negative impact on the bandwidth. Although this problem has been largely studied in the literature, the noisy nature of the feedback channel is less considered. In this paper, we introduce PRVNet, a neural architecture based on variational autoencoders (VAE). VAE gained large attention in many fields (e.g., image processing, language models, or recommendation system). However, it received less attention in the communication domain generally and in CSI feedback problem specifically. We also introduce a different regularization parameter for the learning objective, which proved to be crucial for achieving competitive performance. In addition, we provide an efficient way to tune this parameter using KL-annealing. Empirically, we show that the proposed model significantly outperforms state-of-the-art, including two neural network approaches. The proposed model is also proved to be more robust against different levels of noise.


Author(s):  
Patel Sagar ◽  
Bhalani Jaymin

Spatial correlation is a critical impairment for practical Multiple Input Multiple Output (MIMO) wireless communication systems. To overcome from this issue, one of the solutions is receive antenna selection. Receive antenna selection is a low-cost, low-complexity and no requirement of feedback bit alternative option to capture many of the advantages of MIMO systems. In this paper, symbol error rate (SER) versus signal to noise ratio (SNR) performance comparasion of proposed receive antenna selection scheme for full rate non-orthogonal Space Time Block Code (STBC) is obtained using simulations in MIMO systems under spatially correlated channel at transmit and receive antenna compare with several existing receive antenna selection schemes. The performance of proposed receive antenna selection scheme is same as conventional scheme and beat all other existing schemes.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Zhangkai Luo ◽  
Huali Wang ◽  
Wanghan Lv

We propose a novel time-shift pilot scheme to mitigate the pilot contamination in large-scale multicell multiuser MIMO (LS-MIMO) systems. In the proposed scheme, the length of the uplink training pilot sequence is equal to the cell number; that is to say, the same pilot sequence is used within a cell, while for different cells, pilot sequences are mutually orthogonal. Moreover, users within a cell transmit the same pilot sequence in a time-shift manner during the channel estimation stage and in this way all user terminals’ channel state information can be estimated without contamination. The asymptotic channel orthogonality is studied in the LS-MIMO system, with which the mutual interference among cells caused by data and pilot sequences can be cancelled with the successive interference cancellation (SIC) method. We explore the superiority of the proposed scheme in channel coefficient estimation, uplink data detection, and downlink data transmission steps. Theoretical analysis and simulation results demonstrate that the proposed time-shift pilot design can alleviate the pilot contamination problem and improve the performance of the considered system significantly compared with the popular orthogonal pilots.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Mohammed Al-Ansi ◽  
Syed Alwee Aljunid ◽  
Essam Sourour

This paper considers codebook-based precoding for Space Shift Keying (SSK) modulation MIMO system. Codebook-based precoding avoids the necessity for full knowledge of Channel State Information (CSI) at the transmitter and alleviates the complexity of generating a CSI-optimized precoder. The receiver selects the codeword that maximizes the Minimum Euclidean Distance (MED) of the received constellation and feeds back its index to the transmitter. In this paper, we first develop a new accurate closed-form Bit Error Rate (BER) for SSK without precoding. Then, we investigate several phase-rotation codebooks with quantized set of phases and systematic structure. Namely, we investigate the Full-Combination, Walsh-Hadamard, Quasi-Orthogonal Sequences, and Orthogonal Array Testing codebooks. In addition, since the size of the Full-Combination codebook may be large, we develop an iterative search method for fast selection of its best codeword. The proposed codebooks significantly improve the BER performance in Rayleigh and Nakagami fading channels, even at high spatial correlation among transmit antennas and CSI estimation error. Moreover, we show that only four phases {+1,+j,-1,-j} are sufficient and further phase granularity does yield significant gain. This avoids hardware multiplication during searching the codebook and applying the codeword.


Sign in / Sign up

Export Citation Format

Share Document