scholarly journals Investigation of Injection Strategy of Branched-Preformed Particle Gel/Polymer/Surfactant for Enhanced Oil Recovery after Polymer Flooding in Heterogeneous Reservoirs

Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1950 ◽  
Author(s):  
Hong He ◽  
Jingyu Fu ◽  
Baofeng Hou ◽  
Fuqing Yuan ◽  
Lanlei Guo ◽  
...  

The heterogeneous phase combination flooding (HPCF) system which is composed of a branched-preformed particle gel (B-PPG), polymer, and surfactant has been proposed to enhance oil recovery after polymer flooding in heterogeneous reservoirs by mobility control and reducing oil–water interfacial tension. However, the high cost of chemicals can make this process economically challenging in an era of low oil prices. Thus, in an era of low oil prices, it is becoming even more essential to optimize the heterogeneous phase combination flooding design. In order to optimize the HPCF process, the injection strategy has been designed such that the incremental oil recovery can be maximized using the corresponding combination of the B-PPG, polymer, and surfactant, thereby ensuring a more economically-viable recovery process. Different HPCF injection strategies including simultaneous injection and alternation injection were investigated by conducting parallel sand pack flooding experiments and large-scale plate sand pack flooding experiments. Results show that based on the flow rate ratio, the pressure rising area and the incremental oil recovery, no matter whether the injection strategy is simultaneous injection or alternation injection of HPCF, the HPCF can significantly block high permeability zone, increase the sweep efficiency and oil displacement efficiency, and effectively improve oil recovery. Compared with the simultaneous injection mode, the alternation injection of HPCF can show better sweep efficiency and oil displacement efficiency. Moreover, when the slug of HPCF and polymer/surfactant with the equivalent economical cost is injected by alternation injection mode, as the alternating cycle increases, the incremental oil recovery increases. The remaining oil distribution at different flooding stages investigated by conducting large-scale plate sand pack flooding experiments shows that alternation injection of HPCF can recover more remaining oil in the low permeability zone than simultaneous injection. Hence, these findings could provide the guidance for developing the injection strategy of HPCF to further enhance oil recovery after polymer flooding in heterogeneous reservoirs in the era of low oil prices.

2017 ◽  
Vol 10 (1) ◽  
pp. 94-107 ◽  
Author(s):  
Kaoping Song ◽  
Ning Sun ◽  
Yanfu Pi

Background: Polymer flooding is the most commonly applied chemical enhanced-oil-recovery technique in offshore oilfields. However, there are challenges and risks in applying the technology of polymer flooding to offshore heavy oil development. Objective: This paper compared the spread law and the displacement effect of different injection modes and validated the feasibility of enhancing oil recovery by variable concentrations polymer flooding. Method: Two types of laboratory experiments were designed by using micro etching glass models and heterogeneous artificial cores. Furthermore, in order to determine a better polymer flooding mode, the displacement results, displacement characteristic curves and oil saturation distribution of heterogeneous artificial cores were also compared, respectively. Results: The experimental results showed that the recovery of variable concentrations polymer flooding was higher than that of constant concentration polymer flooding, under conditions of same total amount of polymer and similar water flooding recovery. Its sweep efficiency and displacement efficiency were also significantly higher than those of constant concentration polymer flooding. Moreover, variable concentrations polymer flooding had lower peak pressure and was at lower risk for reaching the formation fracture pressure. Conclusion: As a consequence, variable concentrations polymer flooding has certain feasibility for heterogeneous reservoir in offshore oilfields, and can improve interlayer heterogeneity to further tapping remaining oil in medium and low permeability layer. Conclusions of this paper can provide reference for the field application of polymer flooding in offshore oilfields.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3789 ◽  
Author(s):  
He ◽  
Chen ◽  
Yu ◽  
Wen ◽  
Liu

Surfactant–polymer (SP) flooding has significant potential to enhance oil recovery after water flooding in mature reservoirs. However, the economic benefit of the SP flooding process is unsatisfactory under low oil prices. Thus, it is necessary to reduce the chemical costs and improve SP flooding efficiency to make SP flooding more profitable. Our goal was to maximize the incremental oil recovery of the SP flooding process after water flooding by using the equal chemical consumption cost to ensure the economic viability of the SP flooding process. Thus, a systematic study was carried out to investigate the SP flooding process under different injection strategies by conducting parallel sand pack flooding experiments to optimize the SP flooding design. Then, the comparison of the remaining oil distribution after water flooding and SP flooding under different injection strategies was studied. The results demonstrate that the EOR efficiency of the SP flooding process under the alternating injection of polymer and surfactant–polymer (PASP) is higher than that of conventional simultaneous injection of surfactant and polymer. Moreover, as the alternating cycle increases, the incremental oil recovery increases. Based on the analysis of fractional flow, incremental oil recovery, and remaining oil distribution when compared with the conventional simultaneous injection of surfactant and polymer, the alternating injection of polymer and surfactant–polymer (PASP) showed better sweep efficiency improvement and recovered more remaining oil trapped in the low permeability zone. Thus, these findings could provide insights into designing the SP flooding process under low oil prices.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yuqiu Chen ◽  
Hong He ◽  
Qun Yu ◽  
Huan Liu ◽  
Lijun Chen ◽  
...  

Polymer flooding has a significant potential to enhance oil recovery in a light oil reservoir. However, for polymer flooding in a conventional heavy oil reservoir, due to unfavorable mobility ratio between water and oil, the improvement of sweep efficiency is limited, resulting in a low incremental oil recovery and failure to achieve high-efficiency development for polymer flooding in a conventional heavy oil reservoir. Inspired by the EOR mechanisms of the surfactant-polymer (SP) flooding process, the polymer-viscosity reducing surfactant flooding (P-VRSF) system was proposed to enhance conventional heavy oil recovery. Thus, to gain an insight into enhancing oil recovery by P-VRSF in a conventional heavy oil reservoir, the viscosity property, oil-water interfacial tension property, and oil viscosity reduction property were investigated. A series of parallel sand pack experiments were conducted to investigate enhanced oil recovery ability of polymer flooding and P-VRSF in a heterogeneous reservoir. Then, the 2D micromodel flooding experiments were conducted to investigate the EOR mechanism from porous media to pore level. Results demonstrated that polymer could increase the viscosity of injection water and improve the sweep efficiency. The emulsifying stability of surfactant with ultralow IFT (10-3 mN/m) was worse than that of the surfactant with higher IFT (10-2 mN/m). The viscosity reduction rate of the surfactant with higher IFT was higher than 80% at different oil-water volume ratios. The incremental oi recovery of P-VRSF was higher than that of polymer flooding. Moreover, the polymer-viscosity reducing surfactant with higher IFT could have higher incremental oil recovery. The 2D micromodel flooding results showed that the swept area of polymer flooding and P-VRSF was larger than that of water flooding. Moreover, the swept area of the surfactant with good emulsifying stability was larger than that of the surfactant with ultralow IFT. These findings could provide insights into enhancing oil recovery by P-VRSF in the conventional heavy oil reservoir.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Huiying Zhong ◽  
Qiuyuan Zang ◽  
Hongjun Yin ◽  
Huifen Xia

With the growing demand for oil energy and a decrease in the recoverable reserves of conventional oil, the development of viscous oil, bitumen, and shale oil is playing an important role in the oil industry. Bohai Bay in China is an offshore oilfield that was developed through polymer flooding process. This study investigated the pore-scale displacement of medium viscosity oil by hydrophobically associating water-soluble polymers and purely viscous glycerin solutions. The role and contribution of elasticity on medium oil recovery were revealed and determined. Comparing the residual oil distribution after polymer flooding with that after glycerin flooding at a dead end, the results showed that the residual oil interface exhibited an asymmetrical “U” shape owing to the elasticity behavior of the polymer. This phenomenon revealed the key of elasticity enhancing oil recovery. Comparing the results of polymer flooding with that of glycerin flooding at different water flooding sweep efficiency levels, it was shown that the ratio of elastic contribution on the oil displacement efficiency increased as the water flooding sweep efficiency decreased. Additionally, the experiments on polymers, glycerin solutions, and brines displacement medium viscosity oil based on a constant pressure gradient at the core scale were carried out. The results indicated that the elasticity of the polymer can further reduce the saturation of medium viscosity oil with the same number of capillaries. In this study, the elasticity effect on the medium viscosity oil interface and the elasticity contribution on the medium viscosity oil were specified and clarified. The results of this study are promising with regard to the design and optimum polymers applied in an oilfield and to an improvement in the recovery of medium viscosity oil.


SPE Journal ◽  
2016 ◽  
Vol 21 (03) ◽  
pp. 0675-0687 ◽  
Author(s):  
A.. Clarke ◽  
A. M. Howe ◽  
J.. Mitchell ◽  
J.. Staniland ◽  
L. A. Hawkes

Summary Increasing flooding-solution viscosity with polymers provides a favorable mobility ratio compared with brine flooding and hence improves volumetric sweep efficiency. Flooding with a polymer solution exhibiting elastic properties has been reported to increase displacement efficiency, resulting in a sustained doubling of the recovery enhancement compared with the use of conventional viscous-polymer flooding (Wang et al. 2011). Flooding with viscoelastic-polymer solutions is claimed also to increase recovery more than expected from changes in capillary number alone (Wang et al. 2010). This increase in displacement efficiency by viscoelastic polymers is reported to occur because of changes in the steady-state-flow profile and enhancements in oil stripping and thread formation. However, within the industry there are doubts that a genuine effect is observed, or that improvements in displacement efficiency occur with field-applicable flow regimes (Vermolen et al. 2014). In this study, we demonstrate that flooding with viscoelastic-polymer solutions can indeed increase recovery more than expected from changes in capillary number. We show a mechanism of fluctuations in flow at low Reynolds number by which viscoelastic-polymer solutions provide improvements in displacement efficiency. The mechanism, known as elastic turbulence, is an effect previously unrecognized in this context. We demonstrate that the effect may be obtained at field-relevant flow rates. Furthermore, this underlying mechanism explains both the enhanced capillary-desaturation curves and the observation of apparent flow thickening (Delshad et al. 2008; Seright et al. 2011) for these viscoelastic solutions in porous media. The work contrasts experiments on flow and recovery by use of viscous and viscoelastic-polymer solutions. The circumstances under which viscoelasticity is beneficial are demonstrated. The findings are applicable to the design of formulations for enhanced oil recovery (EOR) by polymer flooding. A combination of coreflooding, micromodel flow, and rheometric studies is presented. The results include single-phase and multiphase floods in sandstone cores. Polymer solutions are viscoelastic [partially hydrolyzed polyacrylamide (HPAM)] or viscous (xanthan). The effects of molecular weight, flow rate, and concentration of the HPAMs are described. The data lead us to suggest a mechanism that may be used to explain the observations of improved displacement efficiency and why the improvement is not seen for all viscoelastic-polymer floods.


2021 ◽  
Author(s):  
Mursal Zeynalli ◽  
Emad W. Al-Shalabi ◽  
Waleed AlAmeri

Abstract Polymer flooding is one of the most commonly used chemical EOR methods. Conventionally, this technique was believed to improve macroscopic sweep efficiency by sweeping only bypassed oil. Nevertheless, recently it has been found that polymers exhibiting viscoelastic behavior in the porous medium can also improve microscopic displacement efficiency resulting in higher additional oil recovery. Therefore, an accurate prediction of the complex rheological response of polymers is crucial to obtain a proper estimation of incremental oil to polymer flooding. In this paper, a novel viscoelastic model is proposed to comprehensively analyze the polymer rheological behavior in porous media. The proposed viscoelastic model is considered an extension of the unified apparent viscosity model provided in the literature and is termed as extended unified viscosity model (E-UVM). The main advantage of the proposed model is its ability to capture the polymer mechanical degradation at ultimate shear rates primarily observed near wellbores. Furthermore, the fitting parameters used in the model were correlated to rock and polymer properties, significantly reducing the need for time-consuming coreflooding tests for future polymer screening works. Moreover, the extended viscoelastic model was implemented in MATLAB Reservoir Simulation Toolbox (MRST) and verified against the original shear model existing in the simulator. It was found that implementing the viscosity model in MRST might be more accurate and practical than the original method. In addition, the comparison between various viscosity models proposed earlier and E-UVM in the reservoir simulator revealed that the latter model could yield more reliable oil recovery predictions since it accommodates the mechanical degradation of polymers. This study presents a novel viscoelastic model that is more comprehensive and representative as opposed to other models in the literature.


SPE Journal ◽  
2018 ◽  
Vol 24 (01) ◽  
pp. 129-139 ◽  
Author(s):  
J. L. Juárez-Morejón ◽  
H.. Bertin ◽  
A.. Omari ◽  
G.. Hamon ◽  
C.. Cottin ◽  
...  

Summary An experimental study of polymer flooding is presented here, focusing on the influence of initial core wettability and flood maturity (volume of water injected before polymer injection) on final oil recovery. Experiments were performed using homogeneous Bentheimer Sandstone samples of similar properties. The cores were oilflooded using mineral oil for water-wet conditions and crude oil (after an aging period) for intermediate-wet conditions; the viscosity ratio between oil and polymer was kept constant in all experiments. Polymer, which is a partially hydrolyzed polyacrylamide (HPAM), was used at a concentration of 2,500 ppm in a moderate-salinity brine. The polymer solution was injected in the core at different waterflood-maturity times [breakthrough (BT) and 0, 1, 1.75, 2.5, 4, and 6.5 pore volumes (PV)]. Coreflood results show that the maturity of polymer injection plays an important role in final oil recovery, regardless of wettability. The waterflood-maturity time 0 PV (polymer injection without initial waterflooding) leads to the best sweep efficiency, whereas final oil production decreases when the polymer-flood maturity is high (late polymer injection after waterflooding). A difference of 15% in recovery is observed between early polymer flooding (0 PV) and late maturity (6.5 PV). Concerning the effect of wettability, the recovery factor obtained with water-wet cores is always lower (from 10 to 20%, depending on maturity) than the values obtained with intermediate-wet cores, raising the importance of correctly restoring core wettability to obtain representative values of polymer incremental recovery. The influence of wettability can be explained by the oil-phase distribution at the pore scale. Considering that the waterflooding period leads to different values of the oil saturation at which polymer flooding starts, we measured the core dispersivity using a tracer method at different states. The two-phase dispersivity decreases when water saturation increases, which is favorable for polymer sweep. This study shows that in addition to wettability, the maturity of polymer flooding plays a dominant role in oil-displacement efficiency. Final recovery is correlated to the dispersion value at which polymer flooding starts. The highest oil recovery is obtained when the polymer is injected early.


Author(s):  
D.Zh. Akhmed-Zaki ◽  
T.S. Imankulov ◽  
B. Matkerim ◽  
B.S. Daribayev ◽  
K.A. Aidarov ◽  
...  

2013 ◽  
Vol 275-277 ◽  
pp. 496-501
Author(s):  
Fu Qing Yuan ◽  
Zhen Quan Li

According to the geological parameters of Shengli Oilfield, sweep efficiency of chemical flooding was analyzed according to injection volume, injection-production parameters of polymer flooding or surfactant-polymer compound flooding. The orthogonal design method was employed to select the important factors influencing on expanding sweep efficiency by chemical flooding. Numerical simulation method was utilized to analyze oil recovery and sweep efficiency of different flooding methods, such as water flooding, polymer flooding and surfactant-polymer compound flooding. Finally, two easy calculation models were established to calculate the expanding degree of sweep efficiency by polymer flooding or SP compound flooding than water flooding. The models were presented as the relationships between geological parameters, such as effective thickness, oil viscosity, porosity and permeability, and fluid parameters, such as polymer-solution viscosity and oil-water interfacial tension. The precision of the two models was high enough to predict sweep efficiency of polymer flooding or SP compound flooding.


2018 ◽  
Vol 140 (10) ◽  
Author(s):  
Zhanxi Pang ◽  
Peng Qi ◽  
Fengyi Zhang ◽  
Taotao Ge ◽  
Huiqing Liu

Heavy oil is an important hydrocarbon resource that plays a great role in petroleum supply for the world. Co-injection of steam and flue gas can be used to develop deep heavy oil reservoirs. In this paper, a series of gas dissolution experiments were implemented to analyze the properties variation of heavy oil. Then, sand-pack flooding experiments were carried out to optimize injection temperature and injection volume of this mixture. Finally, three-dimensional (3D) flooding experiments were completed to analyze the sweep efficiency and the oil recovery factor of flue gas + steam flooding. The role in enhanced oil recovery (EOR) mechanisms was summarized according to the experimental results. The results show that the dissolution of flue gas in heavy oil can largely reduce oil viscosity and its displacement efficiency is obviously higher than conventional steam injection. Flue gas gradually gathers at the top to displace remaining oil and to decrease heat loss of the reservoir top. The ultimate recovery is 49.49% that is 7.95% higher than steam flooding.


Sign in / Sign up

Export Citation Format

Share Document