scholarly journals Carbon Footprint and Water Footprint of Electric Vehicles and Batteries Charging in View of Various Sources of Power Supply in the Czech Republic

Environments ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 38 ◽  
Author(s):  
Simona Jursova ◽  
Dorota Burchart-Korol ◽  
Pavlina Pustejovska

In the light of recent developments regarding electric vehicle market share, we assess the carbon footprint and water footprint of electric vehicles and provide a comparative analysis of energy use from the grid to charge electric vehicle batteries in the Czech Republic. The analysis builds on the electricity generation forecast for the Czech Republic for 2015–2050. The impact of different sources of electricity supply on carbon and water footprints were analyzed based on electricity generation by source for the period. Within the Life Cycle Assessment (LCA), the carbon footprint was calculated using the Intergovernmental Panel on Climate Change (IPCC) method, while the water footprint was determined by the Water Scarcity method. The computational LCA model was provided by the SimaPro v. 8.5 package with the Ecoinvent v. 3 database. The functional unit of study was running an electric vehicle over 100 km. The system boundary covered an electric vehicle life cycle from cradle to grave. For the analysis, we chose a vehicle powered by a lithium-ion battery with assumed consumption 19.9 kWh/100 km. The results show that electricity generated to charge electric vehicle batteries is the main determinant of carbon and water footprints related to electric vehicles in the Czech Republic. Another important factor is passenger car production. Nuclear power is the main determinant of the water footprint for the current and future electric vehicle charging, while, currently, lignite and hard coal are the main determinants of carbon footprint.

2018 ◽  
Vol 202 ◽  
pp. 476-487 ◽  
Author(s):  
Dorota Burchart-Korol ◽  
Simona Jursova ◽  
Piotr Folęga ◽  
Jerzy Korol ◽  
Pavlina Pustejovska ◽  
...  

Author(s):  
Christian Böhmeke ◽  
Thomas Koch

AbstractThis paper describes the CO2 emissions of the additional electricity generation needed in Germany for battery electric vehicles. Different scenarios drawn up by the transmission system operators in past and for future years for expansion of the energy sources of electricity generation in Germany are considered. From these expansion scenarios, hourly resolved real-time simulations of the different years are created. Based on the calculations, it can be shown that even in 2035, the carbon footprint of a battery electric vehicle at a consumption of 22.5 kWh/100 km including losses and provision will be around 100 g CO2/km. Furthermore, it is shown why the often-mentioned German energy mix is not suitable for calculating the emissions of a battery electric vehicle fleet. Since the carbon footprint of a BEV improves significantly over the years due to the progressive expansion of renewable-energy sources, a comparison is drawn at the end of this work between a BEV (29.8 tons of CO2), a conventional diesel vehicle (34.4 tons of CO2), and a diesel vehicle with R33 fuel (25.8 tons of CO2) over the entire useful life.


Author(s):  
Renata Kučerová

The paper deals with the analysis of changes in the development of basic characteristics of the dairy industry in the Czech Republic, which cohere with the integration of the Czech Republic into the European Union. The attention is paid on size of the market, growth rate, life cycle, development of prices and development of foreign trade. The total domestic consumption reached 2111.1 million litres in 2004. The industry is in the maturity. The excess of supply exists in the industry; the growth rate is low, under 5% per year. The integration of the Czech Republic into the EU didn’t bring about changes in the development of basic characteristics – size of the market, growth rate, and life cycle. The volume of production changed. The total volume of purchase of raw milk for production went down by 1.4% to the value in 2000. And all prices in the product vertical – milk and milk products (prices of agricultural producers, production prices and consumer’s prices) rose.The paper is a part of solution of the research plan of the FBE MUAF in Brno, No. MSM 6215648904.


2012 ◽  
Vol 57 (192) ◽  
pp. 55-78 ◽  
Author(s):  
Zdeňka Malá ◽  
Gabriela Cervená

The paper focuses on an analysis of income inequality and expenditure inequality of households in the Czech Republic for the period 2001 - 2009, based on data from the Statistics of Family Accounts. The basic methodological tool is the Gini coefficient and its decomposition according to individual categories of consumer expenditure. The conducted research reaches the conclusion that income inequality is higher than inequality in consumer expenditure, and income inequality for the analyzed period is growing at a higher rate than expenditure inequality. Tax-transfer tools effectively eliminate income inequality, but nevertheless inequality of disposable income exceeds the inequality of net monetary expenditure. As regards the mutual relationship of income inequality and expenditure inequality, expenditure inequality within a period of economic growth and boom copied the course of income inequality, while within a period of economic decline and recession both inequalities showed a completely different development. The main determinant affecting income inequality may be considered to be non-consumer expenditure, particularly expenditure for the acquisition of real estate.


Author(s):  
Giulia Borghesi ◽  
Giuseppe Vignali

Agriculture and food manufacturing have a considerable effect on the environment emissions: holdings and farms play an important role about greenhouse gas emissions and water consumption. This study aims at evaluating the environmental impact of one of the most important Italian DOP product: organic Parmesan Cheese. Environmental performances of the whole dairy supply chain have been assessed according to the life cycle assessment approach (LCA). In this analysis Parmesan Cheese is made from an organic dairy farm in Emilia Romagna, which uses the milk from three different organic livestock productions. Organic agriculture is different from conventional; the major difference is represented by the avoidance of the use of synthetic fertilizers and pesticides made in chemical industry process. Organic agriculture uses organic fertilizers to encourage the natural fertility of the soil respecting the environment and the agro-system. In this case, life cycle approach is used to assess the carbon footprint and the water footprint of organic Parmesan Cheese considering the milk and cheese production. The object at this level is investigating the environmental impact considering the situation before some improvement changes. The functional unit is represented by 1 kg of organic Parmesan Cheese; inventory data refer to the situation in year 2017 and system boundaries consider the inputs related to the cattle and dairy farm until the ripening (included). The carbon footprint is investigated using IPCC 2013 Global Warming Potential (GWP) 100a method, developed by Intergovernmental Panel on Climate Change, and reported in kg of CO2eq. Otherwise, water footprint allows to measure the water consumption and in this work it is assessed using AWARE method (Available Water REmaining).


2021 ◽  
Vol 17 (5) ◽  
pp. 913-939
Author(s):  
Tat'yana S. REMIZOVA ◽  
Dmitrii B. KOSHELEV

Subject. The article reviews various transport electrification scenarios, which would help reduce the CO2 emissions and environmental threats. The environmental and economic security can also be affected if the State insufficiently understands the importance of electric vehicle development, their popularization. It is also crucial to encourage the consumption, develop the infrastructure, innovative projects, which reshape the power engineering structure. Objectives. We determine how global trends influence the production and integration of electric vehicles in Russia. We also evaluate the environmental and cost effectiveness of morot vehicle electrification, opportunities and trajectories for the electric vehicle development nationwide. Methods. The study involves methods used to summarize regulatory, empirical and theoretical data, and general and partial scientific methods and techniques, such as abstraction, analysis, analogy, etc. Results. The article shows the extent of electric transport development worldwide, and focuses on environmental issues and opportunities to reduce the carbon footprint by using electric vehicles and renewable energy sources. We point out opportunities, threats, prospects and disadvantages of the electric vehicle use in Russia. The article indicates how the use of electric cars can be developed in Russia, considering changes in the production structure and the generation of positive effects as much as possible. Conclusions. Currently, Russia evidently lags behind the global production and use of electric cars, without having a priority of the carbon footprint reduction. The strategy for the car segment advancement is underdeveloped. Suggested herein, the ideas for the electric car segment development are aimed to encourage the consumption, production, advancement of infrastructure and innovative projects, and ensure the environmental security of the country.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5833
Author(s):  
Markéta Šerešová ◽  
Jiří Štefanica ◽  
Monika Vitvarová ◽  
Kristina Zakuciová ◽  
Petr Wolf ◽  
...  

As both the human population and living standards grow, so does the worldwide electricity demand. However, the power sector is also one of the biggest environmental polluters. Therefore, options are currently being sought aimed at reducing environmental impacts, one of the potential tools for which concerns the use of life cycle assessment. This study, therefore, focuses on the most commonly used nonrenewable (black coal, lignite, natural gas and nuclear) and renewable sources (wind, hydro and photovoltaic) in the Czech Republic in terms of their construction, operation, and decommissioning periods. Environmental impacts are assessed via the use of selected impact categories by way of product environmental footprint methodology. The results highlight the potential environmental impacts associated with electricity generation for each of the primary energy sources. Black coal and lignite power plants were found to contribute most to the global warming, resource use, energy carriers and respiratory inorganics categories. On the other hand, the impact on water depletion and resource use, mineral and metals categories were found to be most significantly affected by the production of electricity from photovoltaic power plants. Finally, it is proposed that the results be employed to design scenarios for the future energy mix.


Sign in / Sign up

Export Citation Format

Share Document