scholarly journals A Current Reconstruction Strategy Following the Operation Area in a 1-Shunt Inverter System

Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1423 ◽  
Author(s):  
Chang-Hwan Park ◽  
Dong-Youn Kim ◽  
Han-Beom Yeom ◽  
Yung-Deug Son ◽  
Jang-Mok Kim

To reduce the cost of the inverter system in home appliances, a method using a shunt resistor at the DC-link can be substituted for a method using two current sensors at the inverter output. However, the minimum time of the active vector is required to sample the accurate current using a 1-shunt resistor. Therefore, many studies have been conducted investigating current reconstruction methods in the unmeasurable region of the current. The conventional methods using voltage injection have some problems such as high THD (Total Harmonic Distortion) and acoustic noise, because the PWM pattern is shifted. In addition, the current reconstruction is inaccurate in a low modulation region. In this paper, the cause of the noise in conventional methods is analyzed and a simple current reconstruction method based on an average current estimation and a current reference is utilized for reducing acoustic noise. In an immeasurable area, especially a low modulation region, an intermittent PWM shift method is proposed to enhance the accuracy of the reconstructed current. Therefore, a control strategy that combines all of the mentioned methods is implemented for the entire operating range. The effectiveness of the proposed methods is verified through the experimental results and the results of sound measurement in an anechoic chamber are included to compare with the acoustic noise.

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2616 ◽  
Author(s):  
Yungdeug Son ◽  
Jangmok Kim

This paper presents three phase current reconstruction methods for a three-level neutral point clamped inverter (NPCI) by measuring the voltage of a shunt resistor placed in the neutral point of the inverter. In order to accurately acquire the phase currents from the shunt resister, the dwell time of the active voltage vectors need to exceed the minimum time. On the other hand, if the time of active voltage is shorter than the minimum time, the current measurement becomes impossible. In this paper, unmeasurable regions for current are classified into three areas. Area 1 is a region in which both phase currents can be measure. Therefore, it is not necessary to restore the current. In Area 2, only one phase current can be measured. Thus, an estimation or restoration method is needed to measure another phase current. In this paper, the current estimation method using an electrical model of the motor is proposed. Area 3 is the region in which both phase currents can not be measured. In this case, it is necessary to move the voltage vector to the current measurable area by injecting the voltage. In this paper, Area 3 is divided into 36 sectors to inject optimal voltage. The proposed methods have the advantages of high current measurement accuracy and low THD (total harmonic distortion). The effectiveness of the proposed methods are verified through experimental results.


Author(s):  
Baozhou Zhu ◽  
Peter Hofstee ◽  
Johan Peltenburg ◽  
Jinho Lee ◽  
Zaid Alars

Data-free compression raises a new challenge because the original training dataset for a pre-trained model to be compressed is not available due to privacy or transmission issues. Thus, a common approach is to compute a reconstructed training dataset before compression. The current reconstruction methods compute the reconstructed training dataset with a generator by exploiting information from the pre-trained model. However, current reconstruction methods focus on extracting more information from the pre-trained model but do not leverage network engineering. This work is the first to consider network engineering as an approach to design the reconstruction method. Specifically, we propose the AutoReCon method, which is a neural architecture search-based reconstruction method. In the proposed AutoReCon method, the generator architecture is designed automatically given the pre-trained model for reconstruction. Experimental results show that using generators discovered by the AutoRecon method always improve the performance of data-free compression.


Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 179
Author(s):  
Jeongwoo Kim ◽  
Yu Han ◽  
Shanshan Wang ◽  
Yihe Wang ◽  
Younghoon Cho

In this paper, a current restoration method which can be applied to three phase parallel interleaved inverters (TPPII) using two current sensors has been proposed. In the proposed current reconstruction method, the branch current and the phase current of the two phases of the TPPII are sampled concurrently at the peak and valley of the pulse width modulation (PWM) carrier using two hall-effect sensors. Then, the phase current of each inverter is reconstructed by analyzing the sensed current with the current conduction path information according to the switch state in the peak and valley of the PWM carrier. This paper additionally analyzes the characteristics of the offset occurring in the detection process of two current sensors and it proposes a compensation method to reduce the offset on-line. In order to at once reduce the offset of the three-phase recovery current caused by the DC offset of the sensor, a coordinate conversion method and a low pass are used. To verify the performance of the proposed current recovery method and real-time offset compensation method, a simulation using PSIM software was performed, and experiments were conducted using a three phase parallel inverter composed of insulated gate bipolar transistor (IGBT) modules. In particular, the AC offset that occurred in the sampling process during the experiment was analyzed and modeled, and it was reduced by simple calculation.


2020 ◽  
Vol 6 (3) ◽  
pp. 36-39
Author(s):  
Rongqing Chen ◽  
Knut Möller

AbstractPurpose: To evaluate a novel structural-functional DCT-based EIT lung imaging method against the classical EIT reconstruction. Method: Taken retrospectively from a former study, EIT data was evaluated using both reconstruction methods. For different phases of ventilation, EIT images are analyzed with respect to the global inhomogeneity (GI) index for comparison. Results: A significant less variant GI index was observed in the DCTbased method, compared to the index from classical method. Conclusion: The DCT-based method generates more accurate lung contour yet decreasing the essential information in the image which affects the GI index. These preliminary results must be consolidated with more patient data in different breathing states.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4239
Author(s):  
Salam J. Yaqoob ◽  
Adel Obed ◽  
Rana Zubo ◽  
Yasir I. A. Al-Yasir ◽  
Hussein Fadhel ◽  
...  

The single-stage flyback Photovoltaic (PV) micro-inverter is considered as a simple and small in size topology but requires expensive digital microcontrollers such as Field-Programmable Gate Array (FPGA) or Digital Signal Processor (DSP) to increase the system efficiency, this would increase the cost of the overall system. To solve this problem, based on a single-stage flyback structure, this paper proposed a low cost and simple analog-digital control scheme. This control scheme is implemented using a low cost ATMega microcontroller built in the Arduino Uno board and some analog operational amplifiers. First, the single-stage flyback topology is analyzed theoretically and then the design consideration is obtained. Second, a 120 W prototype was developed in the laboratory to validate the proposed control. To prove the effectiveness of this control, we compared the cost price, overall system efficiency, and THD values of the proposed results with the results obtained by the literature. So, a low system component, single power stage, cheap control scheme, and decent efficiency are achieved by the proposed system. Finally, the experimental results present that the proposed system has a maximum efficiency of 91%, with good values of the total harmonic distortion (THD) compared to the results of other authors.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3467 ◽  
Author(s):  
Po Li ◽  
Ruiyu Li ◽  
Haifeng Feng

Inverters are commonly controlled to generate AC current and Total Harmonic Distortion (THD) is the core index in judging the control effect. In this paper, a THD oriented Finite Control Set Model Predictive Control (FCS MPC) scheme is proposed for the single-phase inverter, where a optimization problem is solved to obtain the switching law for realization. Different from the traditional cost function, which focuses on the instantaneous deviation of amplitude between predictive current and its reference, we redesign a cost function that is the linear combination of the current fundamental tracking error, instantaneous THD value and DC component in one fundamental cycle (for 50 Hz, it is 0.02 s). Iterative method is developed for rapid calculation of this cost function. By choosing a switching state from a FCS to minimize the cost function, a FCS MPC is finally constructed. Simulation results in Matlab/Simulink and experimental results on rapid control prototype platform show the effect of this method. Analyses illustrate that, by choosing suitable weight of the cost function, the performance of this THD oriented FCS MPC method is better than the traditional one.


2019 ◽  
Author(s):  
Dejun Yang ◽  
Changming Wang ◽  
Hongbing Fu ◽  
Ziran Wei ◽  
Xin Zhang ◽  
...  

Abstract Background and Aims Routine gastroesophagostomy has been shown to have adverse effects on the recovery of digestive functions and quality of life because patients typically experience reflux symptoms after proximal gastrectomy. This study was performed to assess the feasibility and quality of life benefits of a novel reconstruction method termed Roux-en-Y anastomosis plus antral obstruction (RYAO) following proximal partial gastrectomy. Methods A total of 73 patients who underwent proximal gastrectomy from June 2015 to June 2017 were divided into two groups according to digestive reconstruction methods [RYAO (37 patients) and conventional esophagogastric anastomosis with pyloroplasty (EGPP, 36 patients)]. Clinical data were compared between the two groups retrospectively. Results The mean operative time for digestive reconstruction was slightly longer in the RYAO group than in the EGPP group. However, the incidence of postoperative short-term complications did not differ between the RYAO and the EGPP groups. At the 6-month follow-up, the incidence rates of both reflux esophagitis and gastritis were lower in the RYAO group than in the EGPP group (P = 0.002). Additionally, body weight recovery was better in the RYAO group (P = 0.028). The scale tests indicated that compared with the patients in the EGPP group, the patients in the RYAO group had significantly reduced reflux, nausea and vomiting and reported improvements in their overall health status and quality of life (all P < 0.05). Conclusion RYAO reconstruction may be a feasible procedure to reduce postoperative reflux symptoms and the incidence of reflux esophagitis and gastritis, thus improving patient quality of life after proximal gastrectomy.


2020 ◽  
Vol 53 (2) ◽  
pp. 314-325 ◽  
Author(s):  
N. Axel Henningsson ◽  
Stephen A. Hall ◽  
Jonathan P. Wright ◽  
Johan Hektor

Two methods for reconstructing intragranular strain fields are developed for scanning three-dimensional X-ray diffraction (3DXRD). The methods are compared with a third approach where voxels are reconstructed independently of their neighbours [Hayashi, Setoyama & Seno (2017). Mater. Sci. Forum, 905, 157–164]. The 3D strain field of a tin grain, located within a sample of approximately 70 grains, is analysed and compared across reconstruction methods. Implicit assumptions of sub-problem independence, made in the independent voxel reconstruction method, are demonstrated to introduce bias and reduce reconstruction accuracy. It is verified that the two proposed methods remedy these problems by taking the spatial properties of the inverse problem into account. Improvements in reconstruction quality achieved by the two proposed methods are further supported by reconstructions using synthetic diffraction data.


Geophysics ◽  
2016 ◽  
Vol 81 (2) ◽  
pp. R45-R55 ◽  
Author(s):  
Espen Birger Raknes ◽  
Wiktor Weibull

In reverse time migration (RTM) or full-waveform inversion (FWI), forward and reverse time propagating wavefields are crosscorrelated in time to form either the image condition in RTM or the misfit gradient in FWI. The crosscorrelation condition requires both fields to be available at the same time instants. For large-scale 3D problems, it is not possible, in practice, to store snapshots of the wavefields during forward modeling due to extreme storage requirements. We have developed an approximate wavefield reconstruction method that uses particle velocity field recordings on the boundaries to reconstruct the forward wavefields during the computation of the reverse time wavefields. The method is computationally effective and requires less storage than similar methods. We have compared the reconstruction method to a boundary reconstruction method that uses particle velocity and stress fields at the boundaries and to the optimal checkpointing method. We have tested the methods on a 2D vertical transversely isotropic model and a large-scale 3D elastic FWI problem. Our results revealed that there are small differences in the results for the three methods.


Sign in / Sign up

Export Citation Format

Share Document