scholarly journals An Evaluation Method of Brittleness Characteristics of Shale Based on the Unloading Experiment

Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1779 ◽  
Author(s):  
Xiaogui Zhou ◽  
Haiming Liu ◽  
Yintong Guo ◽  
Lei Wang ◽  
Zhenkun Hou ◽  
...  

Shale reservoir has an initial unloading effect during the natural uplift and erosion process, which causes the shale brittleness to change, affecting the design of the fracturing scheme. To consider this, the axial compression loading and confining pressure unloading experiment of shale is carried out, and then the influence of unloading rate on the mechanical parameters, failure characteristics, and the brittleness of rock are analyzed. What is more, a new evaluation method of brittleness characteristics that take the unloading effect into consideration is proposed. The conclusions are as follows: (1) The unloading rate has a weakening effect on the mechanical parameters, such as the destructive confining pressure and the residual strength of the samples. (2) The failure characteristics of shale specimens are a single shear failure in an oblique section under low unloading rate, and multiple shear zones accompanied with bedding fracture under high unloading rate. (3) The brittleness of shale samples is well verified by the brittleness index B d 1 and B d 2 during the loading path; nevertheless, it has shortage at the unloading path. This paper proposes a new brittleness evaluation method which can consider the influence of the different unloading rates and unloading points. Furthermore, there is a nice characterization between the brittleness damage and this method.

2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Yong Luo ◽  
Fengqiang Gong ◽  
Dongqiao Liu

To study the effect of excavation unloading on hard rock failure, a series of true-triaxial compression tests, biaxial compression tests, and true-triaxial unloading compression tests (two different unloading rates) at different confining pressures was conducted on red sandstone cube samples. The strength and failure characteristics and their relationship for red sandstone unloading at different unloading rates and confining pressures were analyzed. Based on the test results, the effects of the unloading rate and confining pressure on the strength and failure characteristics of hard rock were explored, and a reasonable explanation for unloading-induced spalling in hard rock tunnels was presented. The results show the stress-strain curve of highly stressed red sandstone exhibits a stress step during unloading, and the higher the unloading rate, the lower the stress level required for a stress step. The rock strength-weakening effect induced by unloading was confirmed. The mechanical properties of red sandstone become more unstable and complicated after unloading. After the red sandstone is unloaded to a two-dimensional stress state, with increasing confining pressure, the strength increases first and then decreases; the failure mode changes from a low-confining pressure tensile-shear failure to a high-confining pressure tensile failure; and the geometries of the slabs change from large thick plates and wedges to medium- and small-sized thin plates. At equal confining pressures, the higher the unloading rate, the lower the strength (i.e., the strength-weakening effect is more pronounced), the thinner the slab, and the lower the confining pressure required for the failure mode to change from tensile-shear failure to tensile failure. The unloading rate and confining pressure affect the strength and failure characteristics by affecting the crack initiation type and propagation direction in hard rock. For deep hard rock tunnels with high unloading rate and axial stress, neglecting the effects of unloading rate and axial stress will lead to a dangerous support design. For deep hard rock ore, if the maximal horizontal principal stress exceeds the critical confining pressure, the mining surface should be perpendicular to the direction of the minimal horizontal principal stress. The results of this study are of great engineering significance for guiding deep hard rock tunnel construction and mining.


2019 ◽  
Vol 23 (Suppl. 3) ◽  
pp. 653-660
Author(s):  
Ersheng Zha ◽  
Ru Zhang ◽  
Zetian Zhang ◽  
Li Ren ◽  
Wenju Zhang ◽  
...  

To explore the long-term creep behavior of deep rock, the long-term tri-axial creep mechanical behavior of the rock under different confining pressures has been carried out. The results show that the instantaneous strain and creep strain of the high confining pressure specimen are significantly higher than that of the low confining pressure specimen under high deviatoric stress. By analyzing the failure characteristics of different confining pressure specimens, it is found that with the increase of the confining pressure, the creep failure characteristics of the marble transforms from tensile failure to shear failure. These research results have certain reference significance for the long-term stability analysis of the deep underground caverns.


2021 ◽  
Author(s):  
Zhenhua Zhang ◽  
Huayan Yao ◽  
Hongguo Li ◽  
Hanbin Bian ◽  
Dayong Zhu

Abstract Water has effects on the strength and failure characteristics of the sandstone in natural environment. Conventional triaxial compressive or unloading confining pressure experiments were conducted on sandstone specimens. Experimental results indicate that the compressive strength of sandstone decreases significantly under saturated conditions in comparison with dry conditions, the strength parameters of saturated specimens under unloading confining pressure are also lower than those of dry rock samples; for the sandstone with the same water content, the strengths under triaxial unloading confining pressure is slightly higher than those under triaxial compressive condition; compared with the stress path of triaxial compression, the stress path of unloading confining pressure makes cracks propagate more easily along the axial direction, and the angle between fracture surface and axial direction is smaller. Under triaxial unloading confining pressure, there failure modes of dry sandstone are tension failure and shear failure, while that of saturated sandstone is mainly shear failure. In the process of water saturation, the bond and friction characteristics between grain particles are degraded due to water weakening the cementation between the grain particles and softening grains boundary, and the expansion of clay minerals in the sandstone, which leads to the decrease of macroscopic mechanical strengths.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0245018
Author(s):  
Lihui Zheng ◽  
Yuejin Zhou ◽  
Mingpeng Li ◽  
Xiaotong Li

To develop a new gangue polymer filling material with low compressive ratio, this paper intends to add high water cementing material to the gangue for backfilling. Uniaxial and tri-axial bearing experiments were conducted to study its bearing characteristics and residual strength. Based on Hock-Brown model theory, it is proposed that friction angle φr can be introduced to substitute model parameter mi, and the degree of cohesion loss can characterize the value of s. So the improved H-B model is established to characterize the residual strength of materials with ductile failure characteristics. The results show that the compressive strength of high water filling material increases linearly corresponding to the rise of confining pressure, and its strength characteristics conform to Mohr-Coulomb strength criterion. The ductile failure characteristics of the sample endow it with high residual strength, which in turn qualifies it for underground filling. After the introduction of cohesion and friction angle, the improved H-B criterion can fit the residual strength curve of the high water filling material more competently. The fitting coefficient of the samples with three water contents is 1.00, 0.99, and 1.00, respectively. The improved H-B model of residual strength demonstrates the change rule of residual strength of the samples corresponding to the change of confining pressure; under tri-axial loading, the angle between fracture surface and axial direction becomes larger as the confining pressure rises; and the failure mode of the material transforms from splitting failure to shear failure.


2021 ◽  
Author(s):  
Paraskevi Io Ioannidi ◽  
Laetitia Le Pourhiet ◽  
Philippe Agard ◽  
Samuel Angiboust ◽  
Onno Oncken

<p>Exhumed subduction shear zones often exhibit block-in-matrix structures comprising strong clasts within a weak matrix (mélanges). Inspired by such observations, we create synthetic models with different proportions of strong clasts and compare them to natural mélange outcrops. We use 2D Finite Element visco-plastic numerical simulations in simple shear kinematic conditions and we determine the effective rheology of a mélange with basaltic blocks embedded within a wet quartzitic matrix. Our models and their structures are scale-independent; this allows for upscaling published field geometries to km-scale models, compatible with large-scale far-field observations. By varying confining pressure, temperature and strain rate we evaluate effective rheological estimates for a natural subduction interface. Deformation and strain localization are affected by the block-in-matrix ratio. In models where both materials deform viscously, the effective dislocation creep parameters (A, n, and Q) vary between the values of the strong and the weak phase. Approaching the frictional-viscous transition, the mélange bulk rheology is effectively viscous creep but in the small scale parts of the blocks are frictional, leading to higher stresses. This results in an effective value of the stress exponent, n, greater than that of both pure phases, as well as an effective viscosity lower than the weak phase. Our effective rheology parameters may be used in large scale geodynamic models, as a proxy for a heterogeneous subduction interface, if an appropriate evolution law for the block concentration of a mélange is given.</p>


2018 ◽  
Vol 14 (2) ◽  
pp. 443-460 ◽  
Author(s):  
Yulong Zhang ◽  
Jianfu Shao ◽  
Zaobao Liu ◽  
Chong Shi ◽  
Géry De Saxcé

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Linna Sun ◽  
Liming Zhang ◽  
Yu Cong ◽  
Yaduo Song ◽  
Keqiang He

AbstractFailure tests on marble during unloading confining-pressure under constant axial stress and simulations with the particle flow code were performed. The influence mechanism of the unloading rate of the confining pressure, initial unloading stress, and confining pressure on the failure characteristics of, and crack propagation in, marble was studied. By using the trial-and-error method, the conversion relationship between the unloading rates of confining pressures in laboratory tests and numerical simulations was ascertained. Micro-cracks formed in the unloading process of confining pressure are dominated by tension cracks, accompanied by shear cracks. The propagation of shear cracks lags that of tension cracks. As the confining pressure is increased, more cracks occur upon failure of the samples. The proportion of shear cracks increases while that of tension cracks decreases. The failure mode of samples undergoes a transition from shear-dominated failure to conjugated shear failure.


2019 ◽  
Vol 16 (5) ◽  
pp. 862-874
Author(s):  
Yang Song ◽  
Heping Wang ◽  
Meng Ren

Abstract To study more fully the characteristic law of deformation and failure of tuff jointed rock mass of prefabricated parallel discontinuous joint test specimens, the uniaxial compression test was used. The stress–strain curve, peak intensity, deformation parameters, energy characteristics, etc., of the rock test specimens were systematically studied under different combinations of joint dip angle and joint spacing. The research found that: (1) during the failure process of tuff, the peak intensity and elastic modulus followed a U-shaped change pattern and the minimum value was reached when α = 60°; (2) the fracture modes of test specimens with different joint dip angles were different. When α = 30° and 45°, failure characteristics were mixed modes of tensile or tensile shear failure. When α = 60°, failure characteristics were shear. At α = 75°, the failure characteristic was tensile shear failure. (3) The absorbed and dissipated energy of the rock increased nonlinearly at each stage of deformation. (4) We quantified rock energy damage through a correlation between dissipated energy and absorbed energy of the rock in the process of energy evolution, and obtained an evolution of the relationship between the dissipated energy ratio, crack dip angle and crack spacing. Based on different fracture distribution methods and according to the strain equivalence principle, the constitutive equation of the pre-peak rock damage was obtained.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Huiqiang Duan ◽  
Depeng Ma

The damage and failure state of the loaded coal and rock masses is indirectly reflected by its acoustic emission (AE) characteristics. Therefore, it is of great significance to study the AE evolution of loaded coal and rock masses for the evaluation of damage degree and prediction of collapse. The paper mainly represents a numerical simulation investigation of the AE characteristics of coal specimen subjected to cyclic loading under three confining pressures, loading-unloading rates, and valley stresses. From the numerical simulation tests, the following conclusions can be drawn: (1) The final cycle number of coal specimen subjected to cyclic loading is significantly influenced by the confining pressure, followed the valley stress. With the increase in confining pressure or valley stress, the cycle number tends to increase. However, the loading-unloading rate has a little influence on it. (2) The AE counts of coal specimen subjected to cyclic loading are greatly influenced by the confining pressure and the valley stress. With the increase in the confining pressure, the cumulative AE counts at the 1st cycle tend to increase but decrease at a cycle before failure; with the decrease in the valley stress, the cumulative AE counts per cycle increase in the relatively quiet phase. However, the loading-unloading rate has a little influence on it. (3) The failure mode of coal specimen subjected to cyclic loading is significantly influenced by the confining pressure. Under the uniaxial stress state, there is an inclined main fractured plane in the coal specimen, under the confining pressures of 5 and 10 MPa, the coal specimen represents dispersion failure. The loading-unloading rate and valley stress have little influence on it. (4) The AE ratio is proposed, and its evolution can better reflect the different stages of coal specimen failure under cyclic loading. (5) The influence of confining pressure on the broken degree of coal specimen subjected to cyclic loading is analyzed, and the higher the confining pressure, the more broken the failed coal specimen.


Sign in / Sign up

Export Citation Format

Share Document