scholarly journals Designing Intelligent MIMO Nonlinear Controller Based on Fuzzy Cognitive Map Method for Energy Reduction of the Buildings

Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2713 ◽  
Author(s):  
Farinaz Behrooz ◽  
Rubiyah Yusof ◽  
Norman Mariun ◽  
Uswah Khairuddin ◽  
Zool Hilmi Ismail

Designing a suitable controller for air-conditioning systems to reduce energy consumption and simultaneously meet the requirements of the system is very challenging. Important factors such as stability and performance of the designed controllers should be investigated to ensure the effectiveness of these controllers. In this article, the stability and performance of the fuzzy cognitive map (FCM) controller are investigated. The FCM method is used to control the direct expansion air conditioning system (DX A/C). The FCM controller has the ability to do online learning, and can achieve fast convergence thanks to its simple mathematical computation. The stability analysis of the controller was conducted using both fuzzy bidirectional associative memories (FBAMs) and the Lyapunov function. The performances of the controller were tested based on its ability for reference tracking and disturbance rejection. On the basis of the stability analysis using FBAMS and Lyapunov functions, the system is globally stable. The controller is able to track the set point faithfully, maintaining the temperature and humidity at the desired value. In order to simulate the disturbances, heat and moisture load changed to measure the ability of the controller to reject the disturbance. The results showed that the proposed controller can track the set point and has a good ability for disturbance rejection, making it an effective controller to be employed in the DX A/C system and suitable for a nonlinear robust control system.

2013 ◽  
Vol 572 ◽  
pp. 636-639
Author(s):  
Xi Chen ◽  
Gang Wang

This paper deals with the walking stability analysis of a multi-legged crablike robot over slope using normalized energy stability margin (NESM) method in order to develop a common stabilization description method and achieve robust locomotion for the robot over rough terrains. The robot is simplified with its static stability being described by NESM. The mathematical model of static stability margin is built so as to carry out the simulation of walking stability over slope for the crablike robot that walks in double tetrapod gait. As a consequence, the relationship between stability margin and the height of the robots centroid, as well as its inclination relative to the ground is calculated by the stability criterion. The success and performance of the stability criterion proposed is verified through MATLAB simulation and real-world experiments using multi-legged crablike robot.


2015 ◽  
Vol 137 (5) ◽  
Author(s):  
C. P. Sharma ◽  
A. Srikantha Phani

Friction control at the wheel–rail interface, using on-board solid stick friction modifier systems can lead to enhanced track life, reduced wear, and increased fuel economy in railroads. Frictional contact between the solid stick and the railway wheel itself can potentially cause vibrations within the modifier systems, influencing their stability and performance. A frequency domain linearized stability analysis of the state of steady sliding at the frictional contact between the solid stick and the wheel is performed. The proposed approach relies on individual frequency response functions (FRFs) of the wheel and the applicator–bracket subsystems of the on-board friction modifier. Stability characteristics of three representative bracket designs are qualitatively compared, using the FRFs generated by their respective finite element (FE) models. The FE models are validated by comparing the predicted natural frequencies with corresponding experimentally measured values on a full wheel test rig (FWTR) facility. The validated FE models are then used to compute stability maps which delineate stable and unstable regions of operation in the design parameter space, defined by train speed, angle of applicator, friction coefficient, and bracket design. Strong dependence of stability upon the bracket designs is observed. The methodology developed here can be used by design engineers to assess the effectiveness of design changes on the stability of the applicator–bracket assembly in a virtual environment—thus avoiding costly retrofitting and prototyping. Directions for further model refinement and testing are provided.


2013 ◽  
Vol 427-429 ◽  
pp. 1263-1267
Author(s):  
En Rang Zheng ◽  
Hao Yang ◽  
Shi Chen Wang

The characteristics of PID controller, Active Disturbance Rejection Controller (ADRC) and Linear Active Disturbance Rejection Controller (LADRC) are introduced in the paper, then the parts which can be improved are analyzed, which leads to the topic of balancing linear and nonlinear elements in controller. LADRC with FFTD is used as an example in simulation experiment operated in Matlab7.0.The results shows that the control effect of LADRC with FFTD is better than other three controllers above. The simulation results and perspectives in paper offers reference for combining linear and nonlinear controller and balancing difficulty and performance.


Author(s):  
Alvaro Garzón Casado ◽  
Pablo Cano Marchal ◽  
Christian Wagner ◽  
Juan Gómez Ortega ◽  
Javier Gámez García

2003 ◽  
Vol 40 (1) ◽  
pp. 192-208 ◽  
Author(s):  
H El-Ramly ◽  
N R Morgenstern ◽  
D M Cruden

Probabilistic slope stability analysis offers an efficient framework for logical, systematic incorporation of uncertainty into slope design. The slow integration of probabilistic slope analyses into practice is attributed, among other factors, to the lack of published studies illustrating the implementation and benefits of such techniques. A spreadsheet-based, probabilistic slope analysis methodology is applied to evaluate the stability of a section of the Syncrude Tailings Dyke in Fort McMurray, Canada. The dyke is approximately 44 m high and is founded on presheared clay–shale. The performance of the dyke is governed by uncertainties about material properties and pore-water pressures. Starting with field and laboratory data, this study demonstrates the techniques used in quantifying the various components of parameter uncertainty, conducting a probabilistic assessment, and estimating the probability of unsatisfactory performance. The probability of unsatisfactory performance of the dyke is estimated to be 1.6 × 10–3. Field monitoring data indicate that the dyke performance is adequate. The study thus provides a first link between probability figures and performance. The analysis also quantifies the relative contributions of the various sources of uncertainty to the overall uncertainty in the factor of safety.Key words: probabilistic analysis, slope stability, Monte Carlo simulation, spatial variability, tailings dyke, clay–shale.


2017 ◽  
Vol 16 (8) ◽  
pp. 1807-1817 ◽  
Author(s):  
Fabiana Tornese ◽  
Maria Grazia Gnoni ◽  
Giorgio Mossa ◽  
Giovanni Mummolo ◽  
Rossella Verriello

2019 ◽  
Vol 1 (1) ◽  
pp. 49-60
Author(s):  
Simon Heru Prassetyo ◽  
Ganda Marihot Simangunsong ◽  
Ridho Kresna Wattimena ◽  
Made Astawa Rai ◽  
Irwandy Arif ◽  
...  

This paper focuses on the stability analysis of the Nanjung Water Diversion Twin Tunnels using convergence measurement. The Nanjung Tunnel is horseshoe-shaped in cross-section, 10.2 m x 9.2 m in dimension, and 230 m in length. The location of the tunnel is in Curug Jompong, Margaasih Subdistrict, Bandung. Convergence monitoring was done for 144 days between February 18 and July 11, 2019. The results of the convergence measurement were recorded and plotted into the curves of convergence vs. day and convergence vs. distance from tunnel face. From these plots, the continuity of the convergence and the convergence rate in the tunnel roof and wall were then analyzed. The convergence rates from each tunnel were also compared to empirical values to determine the level of tunnel stability. In general, the trend of convergence rate shows that the Nanjung Tunnel is stable without any indication of instability. Although there was a spike in the convergence rate at several STA in the measured span, that spike was not replicated by the convergence rate in the other measured spans and it was not continuous. The stability of the Nanjung Tunnel is also confirmed from the critical strain analysis, in which most of the STA measured have strain magnitudes located below the critical strain line and are less than 1%.


Sign in / Sign up

Export Citation Format

Share Document