scholarly journals An Output-Based Limit Protection Strategy for Turbofan Engine Propulsion Control with Output Constraints

Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4043
Author(s):  
Jiakun Qin ◽  
Muxuan Pan ◽  
Wenhao Xu ◽  
Jinquan Huang

To accomplish the limit protection task, the Min-Max selection structure is generally adopted in current aircraft engine control strategies. However, since no relationship between controller switching and limit violation is established, this structure is inherently conservative and may produce slower transient responses than the behavior by engine nature. This paper proposes an output-based limit management strategy, which consists of the safety margin module and the parameter prediction module to monitor system responses, plus the switching logic to govern switches between the main controller and limiters, and, in this way, a faster transient performance is achieved, and the limit protections in transient states become more effective. To realize smooth switching control, the linear-quadratic bumpless transfer method is developed. The design principle of the multi-loop switching control and bumpless compensator is detailed, and the effect—on limit protection control performance—of the design parameters in the safety margin and parameter prediction modules are also analyzed. The proposed approach is tested using simulations covering the whole flight envelope on the nonlinear component-level model of a turbofan engine, and the superiority over the Min-Max architecture is also validated.

1986 ◽  
Vol 108 (4) ◽  
pp. 330-339 ◽  
Author(s):  
M. A. Townsend ◽  
D. B. Cherchas ◽  
A. Abdelmessih

This study considers the optimal control of dry bulb temperature and moisture content in a single zone, to be accomplished in such a way as to be implementable in any zone of a multi-zone system. Optimality is determined in terms of appropriate cost and performance functions and subject to practical limits using the maximum principle. Several candidate optimal control strategies are investigated. It is shown that a bang-bang switching control which is theoretically periodic is a least cost practical control. In addition, specific attributes of this class of problem are explored.


Author(s):  
Guixiu Qiao ◽  
Brian A. Weiss

Over time, robots degrade because of age and wear, leading to decreased reliability and increasing potential for faults and failures; this negatively impacts robot availability. Economic factors motivate facilities and factories to improve maintenance operations to monitor robot degradation and detect faults and failures, especially to eliminate unexpected shutdowns. Since robot systems are complex, with sub-systems and components, it is challenging to determine these constituent elements’ specific influence on the overall system performance. The development of monitoring, diagnostic, and prognostic technologies (collectively known as Prognostics and Health Management (PHM)), can aid manufacturers in maintaining the performance of robot systems by providing intelligence to enhance maintenance and control strategies. This paper presents the strategy of integrating top level and component level PHM to detect robot performance degradation (including robot tool center accuracy degradation), supported by the development of a four-layer sensing and analysis structure. The top level PHM can quickly detect robot tool center accuracy degradation through advanced sensing and test methods developed at the National Institute of Standards and Technology (NIST). The component level PHM supports deep data analysis for root cause diagnostics and prognostics. A reference data set is collected and analyzed using the integration of top level PHM and component level PHM to understand the influence of temperature, speed, and payload on robot’s accuracy degradation.


2021 ◽  
Vol 29 (1) ◽  
Author(s):  
Oscar Andrew Zongo ◽  
Anant Oonsivilai

This paper presents a comparison between a proportional-integral controller, low pass filters, and the linear quadratic regulator in dealing with the task of eliminating harmonic currents in the grid-connected photovoltaic system. A brief review of the existing methods applied to mitigate harmonic currents is presented. The Perturb & Observe technique was employed for maximum power point tracking. The PI control, low pass filters, and the linear quadratic regulator are discussed in detail in terms of their control strategies. The grid current was analyzed in the system with all three of the controllers applied to control the voltage source inverter of the solar photovoltaic system connected to the grid through an L filter and LCL filter and simulated in MATLAB/SIMULINK. The simulation results obtained have proven the robustness of the linear quadratic regulator over other methods. The technique lowers the grid current total harmonic distortion from 7.85% to 2.13%.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3170
Author(s):  
Hu ◽  
Chen ◽  
Ding ◽  
Gu

Current studies have achieved energy savings of vehicle subsystems through various control strategies, but these control strategies lack a benchmark to measure whether these energy savings are sufficient. This work proposes a control design framework that uses the 1.5 °C target in the Paris Agreement as a benchmark to measure the adequacy of energy savings of vehicle subsystems. This control design framework involves two points. One is the conversion of the 1.5 °C target into a constraint on the energy consumption of a vehicle subsystem. The other is the optimal control design of the vehicle subsystem under this constraint. To describe the specific application of this control design framework, we conduct a case study concerning the control design of active suspension in a battery electric light-duty vehicle. By comparison with a widely used linear quadratic regulator (LQR) method, we find that this control design framework can both ensure the performance comparable to the LQR method and help to meet the 1.5 °C target in the Paris Climate Agreement. In addition, a sensitivity analysis shows that the control effect is hardly changed by battery electric vehicle market share and electricity CO2 intensity. This work might provide insight on ways that the automotive industry could contribute to the Paris Agreement.


2011 ◽  
Vol 148-149 ◽  
pp. 1072-1076
Author(s):  
Yu Hu ◽  
Yue Cheng Yang ◽  
Shi Ying Zhang ◽  
Xi Xing Yu

In the paper, the fuzzy control algorithm was studied in turbofan engine. The turbofan engine models of “little deflection” model and “large deflection” model were built based on component level model. Then, a fuzzy controller, including the fuzzy-integral mixed controller, smith forecast and compensation, was designed with the fuzzy rules were optimized by improved genetic algorithm. The simulation results show that the designed control system responds fast, has no overshoot or oscillation, and the control precision is high. The controller can effectively solve time delay influence with a great control effect for “little deflection” model and acceleration model.


2017 ◽  
Vol 29 (7) ◽  
pp. 1315-1332 ◽  
Author(s):  
Mohtasham Mohebbi ◽  
Hamed Dadkhah ◽  
Hamed Rasouli Dabbagh

This article presents a new approach for designing effective smart base isolation systems composed of a low-damping linear base isolation and a semi-active magneto-rheological damper. The method is based on transforming the design procedure of the hybrid base isolation system into a constrained optimization problem. The magneto-rheological damper command voltages have been determined using H2/linear quadratic Gaussian and clipped-optimal control algorithms. Through a sensitivity analysis to identify the effective design parameters, base isolation and control algorithm parameters have been taken as design variables and optimally determined using genetic algorithm. To restrict increases in floor accelerations, the objective function of the optimization problem has been defined as minimizing the maximum base drift while putting specific constraint on the acceleration response. For illustration, the proposed method has been applied to design a semi-active hybrid isolation system for a four-story shear building under earthquake excitation. The results of numerical simulations show the effectiveness, simplicity, and capability of the proposed method. Furthermore, it has been shown that using the proposed method, the acceleration of the isolated structure can also be incorporated into design process and practically controlled with a slight sacrifice of control effectiveness in reducing the base drift.


Author(s):  
Wahiba Yaïci ◽  
Evgueniy Entchev ◽  
Pouyan Talebizadeh Sardari ◽  
Michela Longo

Abstract The following paper aims to explore a heat pump’s (HP) as well as an organic Rankine cycle’s (ORC) novel combination for the development of both an efficient and low-emissions heating and cooling systems. This latest review examines both benefits and possibilities of a combined HP-ORC system. Previously, studies have explored several different combinations, such as directly-coupled and reversible combination units as well as parallel configurations units in addition to indirectly-coupled ones. Following defining aforementioned configurations, a discussion on their performance is carried out in detail. Considerations for the optimisation of the architecture, overall of such hybrid systems via utilising the same sources while also discussing heat source, sink selection and operating temperatures as well as thermal energy storage, expander/compressor units, control strategies in addition to working fluids’ selection and managing seasonal temperatures that are increasingly variable, have been identified. Additionally, the experimental studies that have been performed reveal increasingly practical obstacles as well as other areas that require more research while serving to shed light on experimental techniques, which can be applicable to this research’s area. Based upon research, it has been revealed that regional conditions including temperatures and annual weather as well as the cost of energy produce a colossal effect on such systems’ economic feasibility framework as well as partially dictating the overall system configuration’s selection. Additionally, the review disclosed how important the following elements are: 1) a greater temperature differential amid the source of heat and heat sink; 2) proper source of heat and sink selection; 3) working fluid selection; and 4) thermal storage for the maintenance of the difference. Comparatively, from the research works from the past, additional optimisation based on individual component level as well as through control strategies of either an advanced or predictive method, these produce a smaller effect and are worth performing an evaluation on economically due to them not being feasible for the current system. Lastly, based on investigated research, there are certain areas for which recommendation have been provided with regard to future research and this includes a technology configurations’ comparison for understanding different regions’ optimal system, a sensitivity analysis for understanding key system elements for both optimisation as well as design, both an investigation as well as testing carried out for available units and applicable systems that are presently available, and identifying novel use cases.


Solar Energy ◽  
2004 ◽  
Author(s):  
Gregor P. Henze

This paper describes simulation-based results of a large-scale investigation of a commercial cooling plant including a thermal energy storage system. A cooling plant with an ice-on-coil system with external melt and a reciprocating compressor operating in a large office building was analyzed under four different control strategies. Optimal control as the strategy that minimizes the total operating cost (demand and energy charges) served as a benchmark to assess the performance of the three conventional controls. However, all control strategies depend on properly selected design parameters. The storage and chiller capacities as the primary design parameters were varied over a wide range and the dependence of the system’s cost saving performance on these parameters was evaluated.


2014 ◽  
Vol 663 ◽  
pp. 146-151 ◽  
Author(s):  
Noraishikin Zulkarnain ◽  
Hairi Zamzuri ◽  
Saiful Amri Mazlan

The objective of this paper is to design a linear quadratic regulator (LQR) and linear quadratic Gaussian (LQG) controllers for an active anti-roll bar system. The use of an active anti-roll bar will be analysed from two different perspectives in vehicle ride comfort and handling performances. This paper proposed the basic vehicle dynamic modelling with four degree of freedom (DOF) on half car model and are described that show, why and how it is possible to control the handling and ride comfort of the car, with the external forces also control strategies on the front anti-roll bar. By simulation analysis, the design model is validity and the performance under control of linear quadratic regulator (LQR) and linear quadratic Gaussian (LQG) controller are achieved. Both two controllers are modeled in MATLAB/SIMULINK environment. It has to be determined which control strategy delivers better performance with respect to roll angle and the roll rate of half vehicle body. The result shows, however, that LQG produced better response compared to a LQR strategy.


Sign in / Sign up

Export Citation Format

Share Document