scholarly journals A Contribution to the Geological Characterization of a Potential Caprock-Reservoir System in the Sulcis Coal Basin (South-Western Sardinia)

Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4524 ◽  
Author(s):  
Fais ◽  
Casula ◽  
Cuccuru ◽  
Ligas ◽  
Bianchi ◽  
...  

The results provided by this study contribute to the geological characterization of a potential caprock-reservoir system for CO2 storage in the experimental area of the mining district of the Sulcis Coal Basin (south-western Sardinia, Italy). The work is aimed to improve the knowledge of the petrographic and petrophysical characteristics of the siliciclastic and carbonate geological formations that make up the potential caprock-reservoir system. Core samples from a number of wells drilled in the study area for mining purposes were analyzed especially for texture and physical properties (longitudinal velocity, density, porosity, and permeability). The preliminary integrated petrographic and petrophysical characterizations indicate that the Upper Paleocene to Early Eocene potential carbonate reservoir is heterogeneous but presents suitable reservoir zones for CO2. A preliminary analysis of the potential caprock siliciclastic lithologies of the Middle Eocene to Lower Oligocene suggests that they appear suitable for CO2 confinement. Finally, to account for the stability of the investigated area, an accurate geodynamical study of south-western Sardinia was carried out using global navigation satellite system and advanced differential interferometric synthetic aperture radar methodologies in order to estimate vertical and horizontal crustal displacements. The study area results stable, since it is characterized by surface crustal horizontal and vertical velocities smaller than 1 mm/year and few mm/year, respectively.

2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Hatef Keshvadi ◽  
Ali Broumandan ◽  
Gérard Lachapelle

There is a growing interest in detecting and processing Global Navigation Satellite System (GNSS) signals in indoors and urban canyons by handheld devices. To overcome the signal attenuation problem in such adverse fading environments, long coherent integration is normally used. Moving the antenna arbitrarily while collecting signals is generally avoided as it temporally decorrelates the signals and limits the coherent integration gain. This decorrelation is a function of the antenna displacement and geometry of reflectors and angle of arrival of the received signal. Hence, to have an optimum receiver processing strategy it is crucial to characterize the multipath fading channel parameters. Herein, Angle of Arrival (AoA) and Angle Spread (AS) along with signal spatial correlation coefficient and fading intensity in GNSS multipath indoor channels are defined and quantified theoretically and practically. A synthetic uniform circular array utilizing a right-hand circular polarized (RHCP) antenna has been used to measure the spatial characteristics of indoor GNSS fading channels. Furthermore, rotating effect of a circular polarized antenna on the synthetic array processing and AoA estimation has been characterized. The performance of the beamforming technique via array gain is also assessed to explore the advantages and limitations of beamforming in fading conditions.


2015 ◽  
Vol 76 ◽  
pp. 503-511 ◽  
Author(s):  
Silvana Fais ◽  
Paola Ligas ◽  
Francesco Cuccuru ◽  
Enrico Maggio ◽  
Alberto Plaisant ◽  
...  

Robotics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 97
Author(s):  
André Silva Aguiar ◽  
Filipe Neves dos Santos ◽  
José Boaventura Cunha ◽  
Héber Sobreira ◽  
Armando Jorge Sousa

Research and development of autonomous mobile robotic solutions that can perform several active agricultural tasks (pruning, harvesting, mowing) have been growing. Robots are now used for a variety of tasks such as planting, harvesting, environmental monitoring, supply of water and nutrients, and others. To do so, robots need to be able to perform online localization and, if desired, mapping. The most used approach for localization in agricultural applications is based in standalone Global Navigation Satellite System-based systems. However, in many agricultural and forest environments, satellite signals are unavailable or inaccurate, which leads to the need of advanced solutions independent from these signals. Approaches like simultaneous localization and mapping and visual odometry are the most promising solutions to increase localization reliability and availability. This work leads to the main conclusion that, few methods can achieve simultaneously the desired goals of scalability, availability, and accuracy, due to the challenges imposed by these harsh environments. In the near future, novel contributions to this field are expected that will help one to achieve the desired goals, with the development of more advanced techniques, based on 3D localization, and semantic and topological mapping. In this context, this work proposes an analysis of the current state-of-the-art of localization and mapping approaches in agriculture and forest environments. Additionally, an overview about the available datasets to develop and test these approaches is performed. Finally, a critical analysis of this research field is done, with the characterization of the literature using a variety of metrics.


2018 ◽  
Vol 940 (10) ◽  
pp. 2-6
Author(s):  
J.A. Younes ◽  
M.G. Mustafin

The issue of calculating the plane rectangular coordinates using the data obtained by the satellite observations during the creation of the geodetic networks is discussed in the article. The peculiarity of these works is in conversion of the coordinates into the Mercator projection, while the plane coordinate system on the base of Gauss-Kruger projection is used in Russia. When using the technology of global navigation satellite system, this task is relevant for any point (area) of the Earth due to a fundamentally different approach in determining the coordinates. The fact is that satellite determinations are much more precise than the ground coordination methods (triangulation and others). In addition, the conversion to the zonal coordinate system is associated with errors; the value at present can prove to be completely critical. The expediency of using the Mercator projection in the topographic and geodetic works production at low latitudes is shown numerically on the basis of model calculations. To convert the coordinates from the geocentric system with the Mercator projection, a programming algorithm which is widely used in Russia was chosen. For its application under low-latitude conditions, the modification of known formulas to be used in Saudi Arabia is implemented.


2021 ◽  
Vol 13 (14) ◽  
pp. 8054
Author(s):  
Artur Janowski ◽  
Rafał Kaźmierczak ◽  
Cezary Kowalczyk ◽  
Jakub Szulwic

Knowing the exact number of fruits and trees helps farmers to make better decisions in their orchard production management. The current practice of crop estimation practice often involves manual counting of fruits (before harvesting), which is an extremely time-consuming and costly process. Additionally, this is not practicable for large orchards. Thanks to the changes that have taken place in recent years in the field of image analysis methods and computational performance, it is possible to create solutions for automatic fruit counting based on registered digital images. The pilot study aims to confirm the state of knowledge in the use of three methods (You Only Look Once—YOLO, Viola–Jones—a method based on the synergy of morphological operations of digital imagesand Hough transformation) of image recognition for apple detecting and counting. The study compared the results of three image analysis methods that can be used for counting apple fruits. They were validated, and their results allowed the recommendation of a method based on the YOLO algorithm for the proposed solution. It was based on the use of mass accessible devices (smartphones equipped with a camera with the required accuracy of image acquisition and accurate Global Navigation Satellite System (GNSS) positioning) for orchard owners to count growing apples. In our pilot study, three methods of counting apples were tested to create an automatic system for estimating apple yields in orchards. The test orchard is located at the University of Warmia and Mazury in Olsztyn. The tests were carried out on four trees located in different parts of the orchard. For the tests used, the dataset contained 1102 apple images and 3800 background images without fruits.


2021 ◽  
pp. 1-16
Author(s):  
Hong Hu ◽  
Xuefeng Xie ◽  
Jingxiang Gao ◽  
Shuanggen Jin ◽  
Peng Jiang

Abstract Stochastic models are essential for precise navigation and positioning of the global navigation satellite system (GNSS). A stochastic model can influence the resolution of ambiguity, which is a key step in GNSS positioning. Most of the existing multi-GNSS stochastic models are based on the GPS empirical model, while differences in the precision of observations among different systems are not considered. In this paper, three refined stochastic models, namely the variance components between systems (RSM1), the variances of different types of observations (RSM2) and the variances of observations for each satellite (RSM3) are proposed based on the least-squares variance component estimation (LS-VCE). Zero-baseline and short-baseline GNSS experimental data were used to verify the proposed three refined stochastic models. The results show that, compared with the traditional elevation-dependent model (EDM), though the proposed models do not significantly improve the ambiguity resolution success rate, the positioning precision of the three proposed models has been improved. RSM3, which is more realistic for the data itself, performs the best, and the precision at elevation mask angles 20°, 30°, 40°, 50° can be improved by 4⋅6%, 7⋅6%, 13⋅2%, 73⋅0% for L1-B1-E1 and 1⋅1%, 4⋅8%, 16⋅3%, 64⋅5% for L2-B2-E5a, respectively.


Geosciences ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 16
Author(s):  
Christina Oikonomou ◽  
Haris Haralambous ◽  
Sergey Pulinets ◽  
Aakriti Khadka ◽  
Shukra R. Paudel ◽  
...  

The purpose of the present study is to investigate simultaneously pre-earthquake ionospheric and atmospheric disturbances by the application of different methodologies, with the ultimate aim to detect their possible link with the impending seismic event. Three large earthquakes in Mexico are selected (8.2 Mw, 7.1 Mw and 6.6 Mw during 8 and 19 September 2017 and 21 January 2016 respectively), while ionospheric variations during the entire year 2017 prior to 37 earthquakes are also examined. In particular, Total Electron Content (TEC) retrieved from Global Navigation Satellite System (GNSS) networks and Atmospheric Chemical Potential (ACP) variations extracted from an atmospheric model are analyzed by performing statistical and spectral analysis on TEC measurements with the aid of Global Ionospheric Maps (GIMs), Ionospheric Precursor Mask (IPM) methodology and time series and regional maps of ACP. It is found that both large and short scale ionospheric anomalies occurring from few hours to a few days prior to the seismic events may be linked to the forthcoming events and most of them are nearly concurrent with atmospheric anomalies happening during the same day. This analysis also highlights that even in low-latitude areas it is possible to discern pre-earthquake ionospheric disturbances possibly linked with the imminent seismic events.


Sign in / Sign up

Export Citation Format

Share Document