scholarly journals Thermo-Economic Assessment of a Gas Microturbine-Absorption Chiller Trigeneration System under Different Compressor Inlet Air Temperatures

Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4643 ◽  
Author(s):  
Guillermo Valencia Ochoa ◽  
Carlos Acevedo Peñaloza ◽  
Jorge Duarte Forero

This manuscript presents a thermo-economic analysis for a trigeneration system integrated by an absorption refrigeration chiller, a gas microturbine, and the heat recovery steam generation subsystem. The effect of the compressor inlet air temperature on the thermo-economic performance of the trigeneration system was studied and analyzed in detail based on a validated model. Then, we determined the critical operating conditions for which the trigeneration system presents the greatest exergy destruction, producing an increase in the costs associated with loss of exergy, relative costs, and operation and maintenance costs. The results also show that the combustion chamber of the gas microturbine is the component with the greatest exergy destruction (29.24%), followed by the generator of the absorption refrigeration chiller (26.25%). In addition, the compressor inlet air temperature increases from 305.15 K to 315.15 K, causing a decrease in the relative cost difference of the evaporator (21.63%). Likewise, the exergo-economic factor in the heat exchanger and generator presented an increase of 6.53% and 2.84%, respectively.

2020 ◽  
Vol 1008 ◽  
pp. 128-138
Author(s):  
Ahmed M. Salman ◽  
Ibrahim A. Ibrahim ◽  
Hamada M. Gad ◽  
Tharwat M. Farag

In the present study, the combustion characteristics of LPG gaseous fuel diffusion flame at elevated air temperatures were experimentally investigated. An experimental test rig was manufactured to examine a wide range of operating conditions. The investigated parameters are the air temperatures of 300, 350, 400, 450, and 500 K with constant percentage of nitrogen addition in combustion air stream of 5 % to give low oxygen concentration of 18.3 % by mass at constant air swirl number, air to fuel mass ratio, and thermal load of 1.5, 30, and 23 kW, respectively. The gaseous combustion characteristics were represented as axial and radial temperatures distributions, temperatures gradient, visible flame length and species concentrations. The results indicated that as the air temperature increased, the chemical reaction rate increased and flame volume decreased, the combustion time reduced leading to a reduction in flame length. The NO concentration reaches its maximum values near the location of the maximum centerline axial temperature. Increasing the combustion air temperature by 200 K, the NO consequently O2 concentrations are increased by about % 355 and 20 % respectively, while CO2 and CO concentrations are decreased by about % 21 and 99 % respectively, at the combustor end.


2016 ◽  
Vol 20 (suppl. 5) ◽  
pp. 1435-1447
Author(s):  
Jasmina Bogdanovic-Jovanovic ◽  
Dragica Milenkovic ◽  
Zivan Spasic ◽  
Dragan Svrkota

Performance characteristics of fans are generally provided for the normal temperature and pressure conditions (tI = 20?C, pI = 101.325 kPa, ? I = 1.2 kg/m3). Very often, fans operate in different air conditions, occasionally at different air temperatures. In these cases, equations obtained by the law of similarity are usually used for recalculation of the fan operating parameters. Increasing the inlet air temperature causes a decrease in the characteristic of Reynolds number, and may lead to efficiency lowering of the fan. There are also some empirical formulas for recalculation of fan efficiency, when operating at different air temperatures. In this paper, the common way for obtaining fan performance for different operating conditions (air temperature changing) is presented. The results, obtained by recalculation of fan parameters using a law of similarity, are compared to numerical simulation results of the axial-flow fan operating with different air temperatures. These results are compared with results obtained by some recommended empirical formulas, as well. This paperwork is limited to low-pressure and mid-pressure fans, which represents the majority of all fans used in practice, for different purposes.


Author(s):  
Sami M. Alelyani ◽  
Nicholas W. Fette ◽  
Ellen B. Stechel ◽  
Pinchas Doron ◽  
Patrick E. Phelan

This paper investigates the opportunities for integrating thermally driven cooling systems with thermally driven desalination systems via cascade of reject heat. Single- and double-stage ammonia-water (NH3–H2O) absorption refrigeration systems with multi-effect distillation (MED) are selected for this study based on technical limitations and practical considerations. Cooling capacity and hourly water production are calculated from thermodynamic properties of the working fluids at different operating conditions using simple models for each of the constituent systems. Additionally, the second law of thermodynamics is applied with the aim of examining the entropy generation of each component as well as the total exergy destruction of the entire system. The results indicate that the total exergy destruction of the combined systems, which consist of an MED unit driven by either a single- or double-stage NH3–H2O refrigeration system, decreases by an average of 55% compared to stand-alone NH3–H2O and MED systems. Relative to stand-alone systems, although water production decreases by 30% and 9% when an MED unit is integrated with single- and double-stage NH3–H2O absorption systems, respectively, cooling capacity remains unchanged for the double-stage NH3-H2O–MED system, and only decreases by 16% for the single-stage NH3-H2O–MED system.


2019 ◽  
Author(s):  
D. Barreto ◽  
J. Fajardo ◽  
J. Campillo

Abstract Conventional exergy analysis identifies the more inefficient components; however, this doesn’t regard interaction between components, neither real improvement potential to each component of the system, this information is providing for the advanced exergy analysis. In this paper was developed an advanced exergy analysis to determine the optimal range of the compressor inlet air temperature, to compensate the power loss in a power plant with Stig cycle and an air cooling system. This plant without cooling system at ISO conditions produce 52 MW, while in local conditions (32 °C, 80%RH) its productions decreases to 44.3MW. The results showed that for every degree centigrade that the air temperature decreases at inlet compressor the power output increases in 0.17 MW and total destroyed exergy increases 0.23 MW. It was determined that for the optimal range of compressor inlet air temperature is between 10 and 12°C; at this range were obtained the highest power output values, and the values of the avoidable and endogenous exergy destroyed are diminished in 0.28 MW and 0.20 MW respectively compared to those given in local operating conditions.


TAPPI Journal ◽  
2014 ◽  
Vol 13 (8) ◽  
pp. 65-78 ◽  
Author(s):  
W.B.A. (SANDY) SHARP ◽  
W.J. JIM FREDERICK ◽  
JAMES R. KEISER ◽  
DOUGLAS L. SINGBEIL

The efficiencies of biomass-fueled power plants are much lower than those of coal-fueled plants because they restrict their exit steam temperatures to inhibit fireside corrosion of superheater tubes. However, restricting the temperature of a given mass of steam produced by a biomass boiler decreases the amount of power that can be generated from this steam in the turbine generator. This paper examines the relationship between the temperature of superheated steam produced by a boiler and the quantity of power that it can generate. The thermodynamic basis for this relationship is presented, and the value of the additional power that could be generated by operating with higher superheated steam temperatures is estimated. Calculations are presented for five plants that produce both steam and power. Two are powered by black liquor recovery boilers and three by wood-fired boilers. Steam generation parameters for these plants were supplied by industrial partners. Calculations using thermodynamics-based plant simulation software show that the value of the increased power that could be generated in these units by increasing superheated steam temperatures 100°C above current operating conditions ranges between US$2,410,000 and US$11,180,000 per year. The costs and benefits of achieving higher superheated steam conditions in an individual boiler depend on local plant conditions and the price of power. However, the magnitude of the increased power that can be generated by increasing superheated steam temperatures is so great that it appears to justify the cost of corrosion-mitigation methods such as installing corrosion-resistant materials costing far more than current superheater alloys; redesigning biomassfueled boilers to remove the superheater from the flue gas path; or adding chemicals to remove corrosive constituents from the flue gas. The most economic pathways to higher steam temperatures will very likely involve combinations of these methods. Particularly attractive approaches include installing more corrosion-resistant alloys in the hottest superheater locations, and relocating the superheater from the flue gas path to an externally-fired location or to the loop seal of a circulating fluidized bed boiler.


2018 ◽  
Vol 14 (1) ◽  
pp. 44-57
Author(s):  
S. N. Shumov

The spatial analysis of distribution and quantity of Hyphantria cunea Drury, 1973 across Ukraine since 1952 till 2016 regarding the values of annual absolute temperatures of ground air is performed using the Gis-technologies. The long-term pest dissemination data (Annual reports…, 1951–1985; Surveys of the distribution of quarantine pests ..., 1986–2017) and meteorological information (Meteorological Yearbooks of air temperature the surface layer of the atmosphere in Ukraine for the period 1951-2016; Branch State of the Hydrometeorological Service at the Central Geophysical Observatory of the Ministry for Emergencies) were used in the present research. The values of boundary negative temperatures of winter diapause of Hyphantria cunea, that unable the development of species’ subsequent generation, are received. Data analyses suggests almost complete elimination of winter diapausing individuals of White American Butterfly (especially pupae) under the air temperature of −32°С. Because of arising questions on the time of action of absolute minimal air temperatures, it is necessary to ascertain the boundary negative temperatures of winter diapause for White American Butterfly. It is also necessary to perform the more detailed research of a corresponding biological material with application to the freezing technics, giving temperature up to −50°С, with the subsequent analysis of the received results by the punched-analysis.


Author(s):  
Tapan K. Ray ◽  
Pankaj Ekbote ◽  
Ranjan Ganguly ◽  
Amitava Gupta

Performance analysis of a 500 MWe steam turbine cycle is performed combining the thermodynamic first and second-law constraints to identify the potential avenues for significant enhancement in efficiency. The efficiency of certain plant components, e.g. condenser, feed water heaters etc., is not readily defined in the gamut of the first law, since their output do not involve any thermodynamic work. Performance criteria for such components are defined in a way which can easily be translated to the overall influence of the cycle input and output, and can be used to assess performances under different operating conditions. A performance calculation software has been developed that computes the energy and exergy flows using thermodynamic property values with the real time operation parameters at the terminal points of each system/equipment and evaluates the relevant rational performance parameters for them. Exergy-based analysis of the turbine cycle under different strategic conditions with different degrees of superheat and reheat sprays exhibit the extent of performance deterioration of the major equipment and its impact to the overall cycle efficiency. For example, during a unit operation with attemperation flow, a traditional energy analysis alone would wrongly indicate an improved thermal performance of HP heater 5, since the feed water temperature rise across it increases. However, the actual performance degradation is reflected as an exergy analysis indicates an increased exergy destruction within the HP heater 5 under reheat spray. These results corroborate to the deterioration of overall cycle efficiency and rightly assist operational optimization. The exergy-based analysis is found to offer a more direct tool for evaluating the commercial implication of the off-design operation of an individual component of a turbine cycle. The exergy destruction is also translated in terms of its environmental impact, since the irretrievable loss of useful work eventually leads to thermal pollution. The technique can be effectively used by practicing engineers in order to improve efficiency by reducing the avoidable exergy destruction, directly assisting the saving of energy resources and decreasing environmental pollution.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 292 ◽  
Author(s):  
Ana Oliveira ◽  
António Lopes ◽  
Ezequiel Correia ◽  
Samuel Niza ◽  
Amílcar Soares

Lisbon is a European Mediterranean city, greatly exposed to heatwaves (HW), according to recent trends and climate change prospects. Considering the Atlantic influence, air temperature observations from Lisbon’s mesoscale network are used to investigate the interactions between background weather and the urban thermal signal (UTS) in summer. Days are classified according to the prevailing regional wind direction, and hourly UTS is compared between HW and non-HW conditions. Northern-wind days predominate, revealing greater maximum air temperatures (up to 40 °C) and greater thermal amplitudes (approximately 10 °C), and account for 37 out of 49 HW days; southern-wind days have milder temperatures, and no HWs occur. Results show that the wind direction groups are significantly different. While southern-wind days have minor UTS variations, northern-wind days have a consistent UTS daily cycle: a diurnal urban cooling island (UCI) (often lower than –1.0 °C), a late afternoon peak urban heat island (UHI) (occasionally surpassing 4.0 °C), and a stable nocturnal UHI (1.5 °C median intensity). UHI/UCI intensities are not significantly different between HW and non-HW conditions, although the synoptic influence is noted. Results indicate that, in Lisbon, the UHI intensity does not increase during HW events, although it is significantly affected by wind. As such, local climate change adaptation strategies must be based on scenarios that account for the synergies between potential changes in regional air temperature and wind.


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1377
Author(s):  
Weifang Shi ◽  
Nan Wang ◽  
Aixuan Xin ◽  
Linglan Liu ◽  
Jiaqi Hou ◽  
...  

Mitigating high air temperatures and heat waves is vital for decreasing air pollution and protecting public health. To improve understanding of microscale urban air temperature variation, this paper performed measurements of air temperature and relative humidity in a field of Wuhan City in the afternoon of hot summer days, and used path analysis and genetic support vector regression (SVR) to quantify the independent influences of land cover and humidity on air temperature variation. The path analysis shows that most effect of the land cover is mediated through relative humidity difference, more than four times as much as the direct effect, and that the direct effect of relative humidity difference is nearly six times that of land cover, even larger than the total effect of the land cover. The SVR simulation illustrates that land cover and relative humidity independently contribute 16.3% and 83.7%, on average, to the rise of the air temperature over the land without vegetation in the study site. An alternative strategy of increasing the humidity artificially is proposed to reduce high air temperatures in urban areas. The study would provide scientific support for the regulation of the microclimate and the mitigation of the high air temperature in urban areas.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Vyacheslav N. Baklagin

The paper shows the changes in the dates (complete freeze-up, ±5 days/°C and complete ice clearance, ±3 days/°C) of the ice regime in Lake Onego depending on changes in average air temperature within the preceding two-month periods (autumn and spring). The regression equations for their calculation based on previous three- and four-month periods according to the 2000-2018 data are also provided. Indicative dates of ice regime based on accumulated air temperatures within the ice period of Lake Onego were also established (early formation of ice phenomena, complete freeze-up phase, beginning of the break-up phase and complete ice clearance). Together with the data on expected air temperature above the lake’s surface, these dependencies enable us to predict the indicative dates of the ice regime.


Sign in / Sign up

Export Citation Format

Share Document