scholarly journals Improvements of a Failure Database for Marine Diesel Engines Using the RCM and Simulations

Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 104 ◽  
Author(s):  
Francisco Vera-García ◽  
José Antonio Pagán Rubio ◽  
José Hernández Grau ◽  
Daniel Albaladejo Hernández

Diesel engines are widely used in marine transportation as a direct connection to the propeller and as electrical principal or auxiliary generator sets. The engine is the most critical piece of equipment on a vessel platform; therefore, the engine’s reliability is paramount in order to optimize safety, life cycle costs, and energy of the boat, and hence, vessel availability. In this paper, the improvements of a failure database used for a four-stroke high-speed marine diesel engine are discussed. This type of engine is normally used in military and civil vessels as the main engine of small patrols and yachts and as an auxiliary generator set (GENSET) for larger vessels. This database was assembled by considering “failure modes, effects, and criticality analysis (FMECA),” as well as an analysis of the symptoms obtained in an engine failure simulator. The FMECA was performed following the methodology of reliability-centered maintenance (RCM), while the engine response against failures was obtained from a failure simulator based on a thermodynamic one-dimensional model created by the authors, which was adjusted and validated with experimental data. The novelty of this work is the methodology applied, which combines expert knowledge of the asset, the RCM methodology, and the failure simulation to obtain an accurate and reliable database for the prediction of failures, which serves as a key element of a diesel engine failure diagnosis system.

2018 ◽  
Vol 1 (1) ◽  
pp. 739-746
Author(s):  
Tomasz Lus

Abstract Constant changes in the operating strategy of marine diesel engines are observed. They refer to whole engine and different functional systems of the engine in different range. The paper presents changes in marine diesel engines operating strategy. Gradual transition from simple failure response operating strategy – Corrective Maintenance (CM) to a reliability-oriented strategy – Reliability Centered Maintenance (RCM) has been described together with some remarks about Planed Maintenance (PM) systems and Condition Based Maintenance (CBM) systems with their latest form called CBM+. Some information about changes in diesel engines operating strategy in the Polish Navy (PN) at the turn of the last 35 years is also presented. An attempt to build engine analyzer for high-speed diesel engines at the Polish Naval Academy (PNA) in order to improve submarine diesel engines operating strategy is also described in the paper.


Author(s):  
Б.И. Руднев ◽  
О.В. Повалихина

Современные тенденции развития судовых дизелей связаны, прежде всего с улучшением их энергетических и экологических характеристик. Это обуславливает появление ряда проблем, важнейшая из которых – возрастание теплонапряженности деталей, образующих камеру сгорания. Высокие локальные тепловые потоки на поверхностях крышки цилиндра, поршня и втулки являются одной из главных причин, снижающих эксплуатационную надежность форсированных судовых дизелей. Достоверность расчетной оценки теплового и напряженно-деформированного состояния деталей, образующих камеру сгорания, определяется главным образом правильностью задания локальных граничных условий со стороны рабочего тела. Учитывая, что доля конвективного теплового потока в суммарном теплообмене достигает в среднем за рабочий цикл 60 – 70%, становится очевидной актуальность разработки надежных расчетно-теоретических методов определения полей скоростей рабочего тела в камере сгорания судовых дизелей. Целью данной статьи является дальнейшее совершенствование математической модели локального конвективного теплообмена в камере сгорания высокооборотного судового дизеля. Показано, что внешнее течение рабочего тела в камере сгорания может быть описано уравнениями Эйлера. Представлены поля скоростей рабочего тела в функции угла поворота коленчатого вала, полученные численным методом. Приведены изотермы и изобары рабочего тела, позволяющие более глубоко проанализировать физику процесса конвективного теплообмена в камере сгорания судового высокооборотного дизельного двигателя. Modern trends in the development of marine diesel engines are associated primarily with the improvement of their energy and environmental characteristics. This gives rise to a number of problems, the most important of which is an increase in the combustion intensity. High local heat fluxes on the surfaces of the cylinder head, piston and liner are one of the main reasons that reduce the operational reliability of boosted marine diesel engines. The reliability of the calculated estimate of the thermal and stress-strain state of parts that form the combustion chamber is mainly determined by the correctness of setting the local boundary conditions from the part of the working medium. Taking into account that the share of convective heat flux in the total heat exchange reaches, on average, 60 - 70% for a working cycle, it becomes obvious the urgency of developing reliable computational and theoretical methods for determining the velocity fields of the working medium in the combustion chamber of marine diesel engines. The purpose of this article is to further improve the mathematical model of local convective heat transfer in the combustion chamber of a high-speed marine diesel engine. It is shown that the external flow of the working medium in the combustion chamber can be described by the Euler equations. The velocity fields of the working medium as a function of the angle of rotation of the crankshaft obtained by the numerical method are shown. Isotherms and isobars of the working medium are given, which allow a more in-depth analysis of the physics of the convective heat transfer process in the combustion chamber of a high-speed marine diesel engine.


1990 ◽  
Vol 27 (04) ◽  
pp. 237-249
Author(s):  
Anastassios N. Perakis ◽  
Bahadir Inozu

Some essential steps for the application of reliability, availability, and maintainability (RAM) techniques to marine diesel engines are presented. The paper begins with a summary of the basic concepts of reliability engineering, followed by a survey of the relevant literature on RAM applications to the marine industry and to marine diesel engines in particular. Next, the results of an informal survey of the reliability, maintenance, and replacement practices of Great Lakes operators are presented. Finally, the first two steps for a RAM application, failure modes and effects analysis and fault tree analysis, are introduced and applied for a prototype Colt-Pielstick marine diesel engine.


Author(s):  

The necessity of adapting diesel engines to work on vegetable oils is justified. The possibility of using rapeseed oil and its mixtures with petroleum diesel fuel as motor fuels is considered. Experimental studies of fuel injection of small high-speed diesel engine type MD-6 (1 Ch 8,0/7,5)when using diesel oil and rapeseed oil and computational studies of auto-tractor diesel engine type D-245.12 (1 ChN 11/12,5), working on blends of petroleum diesel fuel and rapeseed oil. When switching autotractor diesel engine from diesel fuel to rapeseed oil in the full-fuel mode, the mass cycle fuel supply increased by 12 %, and in the small-size high-speed diesel engine – by about 27 %. From the point of view of the flow of the working process of these diesel engines, changes in other parameters of the fuel injection process are less significant. Keywords diesel engine; petroleum diesel fuel; vegetable oil; rapeseed oil; high pressure fuel pump; fuel injector; sprayer


2015 ◽  
Vol 4 (1) ◽  
pp. 1-10 ◽  
Author(s):  
D.N. Basavarajappa ◽  
N. R. Banapurmath ◽  
S.V. Khandal ◽  
G. Manavendra

For economic and social development of any country energy is one of the most essential requirements. Continuously increasing price of crude petroleum fuels in the present days coupled with alarming emissions and stringent emission regulations has led to growing attention towards use of alternative fuels like vegetable oils, alcoholic and gaseous fuels for diesel engine applications. Use of such fuels can ease the burden on the economy by curtailing the fuel imports. Diesel engines are highly efficient and the main problems associated with them is their high smoke and NOx emissions.  Hence there is an urgent need to promote the use of alternative fuels in place of high speed diesel (HSD) as substitute. India has a large agriculture base that can be used as a feed stock to obtain newer fuel which is renewable and sustainable. Accordingly Uppage oil methyl ester (UOME) biodiesel was selected as an alternative fuel. Use of biodiesels in diesel engines fitted with mechanical fuel injection systems has limitation on the injector opening pressure (300 bar). CRDI system can overcome this drawback by injecting fuel at very high pressures (1500-2500 bar) and is most suitable for biodiesel fuels which are high viscous. This paper presents the performance and emission characteristics of a CRDI diesel engine fuelled with UOME biodiesel at different injection timings and injection pressures. From the experimental evidence it was revealed that UOME biodiesel yielded overall better performance with reduced emissions at retarded injection timing of -10° BTDC in CRDI mode of engine operation.


Respuestas ◽  
2016 ◽  
Vol 21 (1) ◽  
pp. 77 ◽  
Author(s):  
Jessica Yajaira Uzcátegui-Gutiérrez ◽  
Andrónico Varela-Cárdenas ◽  
Juan Isidro Díaz-García

Antecedentes: La categoría de clase mundial en mantenimiento se apoya en metodologías como el Mantenimiento Centrado en Confiabilidad (MCC), la cual ayuda a determinar acciones concretas de mantenimiento, identificando fallas y procedimientos de corrección de las mismas. Objetivos: En este trabajo se planteó el diseño de un marco referencial para la aplicación de herramientas para la gestión mantenimiento de empresas cementeras, aplicando la metodología del MCC. Metodología: Se desarrolló una investigación de tipo descriptiva y de campo, en la cual se consideró como unidad de análisis la Fábrica Nacional de Cemento, Planta Táchira en Venezuela. A tal efecto, la técnica de recolección de datos constató indicios escritos y el instrumento seleccionado fue una matriz de categorías. Resultado: Se diagnosticó que la gestión de mantenimiento en la empresa no considera los principios básicos de la confiabilidad de los activos. Conclusiones: Se identificaron las etapas de aplicación de las herramientas de confiabilidad: análisis de criticidad, análisis de modos y efectos de fallas, y análisis de causa - raíz, a través del cumplimiento de tres fases contentivas en un sistema que involucra insumos, procesos y resultados en cada fase; para finalmente indicar las pautas a seguir en la aplicación de las mencionadas herramientas.Abstract Background: The category of world class maintenance is based on methodologies such as Reliability Centered Maintenance, which helps to determine speciic maintenance actions, identifying fails and the procedures for ixing them. Objectives: In this work the design of a framework was proposed to implement management tools for maintenance of cement companies, applying the methodology of the MCC. Method: A descriptive and ield research was developed, in which it was considered as a unit of analysis the National Cement Factory, Plant Tachira in Venezuela. To do this, the data collection technique veriied written evidence and an array of categories was the selected instrument. Result: It was diagnosed that the maintenance management in the company does not consider the basic principles of asset reliability. Conclusions: The stages of application of the tools of reliability were identiied: criticality analysis, analysis of failure modes and effects, and root cause analysis, through compliance three contentive phases in a system involving inputs, processes and results in each phase; to i nally indicate the guidelines in the application of the above-mentioned tools. Palabras Clave: cementera, coniabilidad, herramientas del MCC, Mantenimiento. 


Author(s):  
Michael E. Iden

Abstract The ASME Rail Transportation Division submitted five nominations in 2019 for ASME Historic Mechanical Engineering Landmark status. The nominations are for examples of significant railway technologies involving mechanical engineering and built between 1920 and 1964: 1. SBB 14253 “Crocodile” locomotive (1920): pioneering electric heavy-duty Swiss mountain locomotive, with pioneering features found in many subsequent electric locomotives. 2. Winton 8-201 prototype diesel engine (1933): only surviving of two experimental engines which preceded all GM-Electro-Motive 2-stroke cycle diesel engines for locomotives and other applications; first locomotive diesel engine with lightweight welded steel crankcase and unitized fuel injectors. 3. B&O 50 locomotive (1935): sole surviving example of the first (5) standalone, modular, non-articulated high-speed diesel locomotives from Electro-Motive, functional prototypes for the later “E” passenger and “FT” freight locomotives. 4. Cooper-Bessemer prototype diesel engine (1953): sole surviving example of (4) predecessor 4-stroke cycle diesel engines built for GE Transportation for field test locomotives prior to GE becoming a domestic locomotive manufacturer. 5. SP 9010 locomotive (1964): sole surviving example of (21) experimental German-built diesel locomotives for heavy-duty US mountain railroad operation using a hydromechanical torque converter transmission instead of electric traction motors; proved concept of higher-power and improved wheel-to-rail adhesion. All five nominations were submitted to the ASME national History & Heritage Committee for review. This paper provides a description of each nomination and the status of each proposed railroad Historic Mechanical Engineering Landmark.


2019 ◽  
Vol 21 (9) ◽  
pp. 1662-1677 ◽  
Author(s):  
Xinyi Zhou ◽  
Tie Li ◽  
Yijie Wei ◽  
Ning Wang

Scaled model experiments can greatly reduce the cost, time and energy consumption in diesel engine development, and the similarity of spray characteristics has a primary effect on the overall scaling results of engine performance and pollutant emissions. However, although so far the similarity of spray characteristics under the non-evaporating condition has been studied to some extent, researches on scaling the evaporating sprays are still absent. The maximum liquid penetration length has a close relationship with the spray evaporation processes and is a key parameter in the design of diesel engine spray combustion system. In this article, the similarity of maximum liquid penetration length is theoretically derived based on the hypotheses that the spray evaporation processes in modern high-pressure common rail diesel engines are fuel–air mixing controlled and local interphase transport controlled, respectively. After verifying that the fuel injection rates are perfectly scaled, the similarity of maximum liquid penetration length in evaporating sprays is studied for three scaling laws using two nozzles with hole diameter of 0.11 and 0.14 mm through the high-speed diffused back-illumination method. Under the test conditions of different fuel injection pressures, ambient temperatures and densities, the lift-off law and speed law lead to a slightly increased maximum liquid penetration length, while the pressure law can well scale the maximum liquid penetration length. The experimental results are consistent with the theoretical analyses based on the hypothesis that the spray evaporation processes are fuel–air mixing controlled, indicating that the local interphase transports of energy, momentum and mass on droplet surface are not rate-controlled steps with respect to spray evaporation processes.


Sign in / Sign up

Export Citation Format

Share Document