scholarly journals Novel Soft-Switching Integrated Boost DC-DC Converter for PV Power System

Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 749 ◽  
Author(s):  
Khairy Sayed ◽  
Mohammed G. Gronfula ◽  
Hamdy A. Ziedan

This paper presents a novel soft-switching boost DC-DC converter, which uses an edge-resonant switch capacitor based on the pulse width modulation PWM technique. These converters have high gain voltage due to coupled inductors, which work as a transformer, while the boost converter works as a resonant inductor. Upon turning on, the studied soft switching circuit works at zero-current soft switching (ZCS), and upon turning off, it works at zero-voltage soft switching (ZVS) while using active semiconductor switches. High efficiency and low losses are obtained while using soft switching and auxiliary edge resonance to get a high step-up voltage ratio. A prototype model is implemented in the Power Electronics Laboratory, Assiut University, Egypt. Seventy-two-panel PV modules of 250 W each were used to simulate and execute the setup to examine the proposed boost converter.

Author(s):  
Getzial Anbu Mani ◽  
A. K. Parvathy

<p>Boost converters of high gain are used for photo voltaic systems to obtain high efficiency. These high gain Boost converters gives increased output voltage for a low input produces high outputs for low input voltage. The High gain boost converters have the following merits. Conduction losses input current ripple and stress across the switches is reduced while the efficiency is increases. The high gain of the converters with the above said merits is obtained by changing the duty cycle of switches accordingly .In this paper a boost converter working with interleaved concept along with a additional Nstage voltage Multiplier has been carried out by simulation using MATLAB/ simulink and the mathematical modeling of various parameters is also done.</p>


Author(s):  
G. NARESH GOUD ◽  
Y. LAKSHMI DEEPA ◽  
G.DILLI BABU ◽  
P. RAJASEKHAR ◽  
N. GANGADHER

A new soft-switching boost converter is proposed in this paper. The conventional boost converter generates switching losses at turn ON and OFF, and this causes a reduction in the whole system’s efficiency. The proposed boost converter utilizes a soft switching method using an auxiliary circuit with a resonant inductor and capacitor, auxiliary switch, and diodes. Therefore, the proposed soft-switching boost converter reduces switching losses more than the conventional hard-switching converter. The efficiency, which is about 91% in hard switching, increases to about 97% in the proposed soft-switching converter. In this paper, the performance of the proposed soft-switching boost converter is verified through the theoretical analysis, simulation, and experimental results.


Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 363 ◽  
Author(s):  
Alfredo Medina-Garcia ◽  
Manfred Schlenk ◽  
Diego Morales ◽  
Noel Rodriguez

In this article, an innovative power adaptor based on the asymmetrical pulse width modulation (PWM) flyback topology will be presented. Its benefits compared to other state-of-the-art topologies, such as the active clamp flyback, are analyzed in detail. It will also describe the control methods to achieve high efficiency and power density using zero-voltage switching (ZVS) and zero-current switching (ZCS) techniques over the full range of the input voltage and the output load, providing comprehensive guidelines for the practical design. Finally, we demonstrate the convenience of the proposed design methods with a 65 W adaptor prototype achieving a peak efficiency of close to 95% and a minimum efficiency of 93.4% at full load over the range of the input voltage, as well as a world-class power density of 22 W/inch3 cased.


Author(s):  
S. Narasimha ◽  
Surender Reddy Salkuti

<span>This paper presents the design and operation of three-stage buck-boost converter with high gain soft switching using closed loop proportional integral (PI) controller. The proposed converter is designed by arranging three identical buck-boost converters working in parallel. The converter units are connected to each other by an inductor as a bridge. This inductor plays a vital role in soft switching operation of converter by maintaining the voltage applied to switches at zero voltage at switching intervals, i.e., the zero-voltage switching (ZVS). The closed-loop system is designed by PI controller, and it maintains the output constant irrespective of changes in input, and the system becomes stable. The proposed converter is efficient in reducing switching losses, leading to improved converter efficiency. Due to parallel operation of three identical converters, the output voltage and input current contain fewer ripples than those of a single converter with same specifications. Proposed converter is more economical and reliable with simpler structure as it utilizes only two inductors as extra elements. The design and analysis of proposed circuit has been carried out in MATLAB Simulink by operating the circuit in various modes.</span>


This manuscript presents a novel high gain, high efficiency Soft-switching high step-up DC/DC converter for battery-operated vehicles. The high step-up converter can transfer the power flow from the small voltage to high voltage. The conventional two input inductor hard switched non-isolated DC-DC converter improved with an additional auxiliary cell to attain the Zero voltage switching, due to obtaining the softswitching the efficiency may improve and reduces the stress across the main switches. The isolated converters are used as a transformer to attain high gain, whereas in the proposed converter obtains the high gain without a transformer and contains the high efficiency in the step-up mode of operation. The main aim of the converter is to attain the Zero voltage switching without using any additional auxiliary switches. In this paper, the input voltage applied as 30V, and the obtained output voltage is fifteen times to the applied voltage, which is 450V and the output power 850W. This paper mainly presents the theoretical analysis of converter operation and the evaluation of the simulation results validated with the theoretical analysis.


2018 ◽  
Vol 7 (3) ◽  
pp. 1034
Author(s):  
Ingilala Jagadeesh ◽  
V Indragandhi

The design of high voltage gain DC-DC boost converter is carried out with the addition of the Voltage Multiplier (VM) method. Here the coupled inductor and VM methodologies are proposed to reduce the switching and conduction losses of the Metal Oxide Semiconductor Field Effect Transistor (MOSFET). The Zero Current Switching (ZCS) technique with coupled inductor leakage inductance is used to operate the MOSFET. The leakage inductance is used to decrease the reverse recovery current across the diode. The design procedure of the boost converter and corresponding output waveforms are presented in this paper. Photovoltaic (PV) source converter with coupling inductors soft switching technique has been analyzed and tested in this paper.  


Sign in / Sign up

Export Citation Format

Share Document