scholarly journals Experimental Verification of the Inverse Method of the Heat Transfer Coefficient Calculation

Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1440
Author(s):  
Piotr Duda ◽  
Mariusz Konieczny

The purpose of this work is to formulate a method which can be used to solve nonlinear inverse heat conduction problems and to calculate the heat transfer coefficient distribution on the unknown boundary. The domain under consideration is divided into control volumes in polar coordinates, and heat balance equations are written. Based on temperature transients measured in selected points on the outer surface, temperature values in other points of the domain are determined. Finally, the heat transfer coefficient distribution on the inner surface with the unknown boundary condition is calculated from the presented heat balance equation. The proposed inverse method was verified experimentally using a collector that is part of a semi-industrial laboratory system. This collector is a horizontal, cylindrical thick-walled tank with flat side walls with outlets that enable oil supply and removal. Each side wall has an additional connector to ensure venting. The calculations made it possible to identify the phenomena occurring inside the collector during the experiment. The transient temperature distribution identified by the proposed inverse method was verified by a comparison of the calculated and the measured temperature transients in points inside the collector wall. Very good agreement is observed between the calculated and the measured temperature transients, which confirms the correctness of the identification. This proposed inverse method of the temperature and the heat transfer coefficient calculation is fast enough to apply in online thermal state monitoring systems. The proposed algorithm presented in this paper can easily be implemented industrially.

Author(s):  
Magdalena Jaremkiewicz

Purpose The purpose of this paper is to propose a method of determining the transient temperature of the inner surface of thick-walled elements. The method can be used to determine thermal stresses in pressure elements. Design/methodology/approach An inverse marching method is proposed to determine the transient temperature of the thick-walled element inner surface with high accuracy. Findings Initially, the inverse method was validated computationally. The comparison between the temperatures obtained from the solution for the direct heat conduction problem and the results obtained by means of the proposed inverse method is very satisfactory. Subsequently, the presented method was validated using experimental data. The results obtained from the inverse calculations also gave good results. Originality/value The advantage of the method is the possibility of determining the heat transfer coefficient at a point on the exposed surface based on the local temperature distribution measured on the insulated outer surface. The heat transfer coefficient determined experimentally can be used to calculate thermal stresses in elements with a complex shape. The proposed method can be used in online computer systems to monitor temperature and thermal stresses in thick-walled pressure components because the computing time is very short.


Author(s):  
Alain J. Kassab ◽  
Eduardo A. Divo ◽  
Minking K. Chyu ◽  
Frank J. Cunha

The purpose of the inverse problem considered in this study is to resolve heat transfer coefficient distributions by solving a steady-state inverse problem. Temperature measurements at interior locations supply the additional information that renders the inverse problem solvable. A regularized quadratic functional is defined to measure the deviation of computed temperatures from the values under current estimates of the heat transfer coefficient distribution at the surface exposed to convective heat transfer. The inverse problem is solved by minimizing this functional using a parallelized genetic algorithm (PGA) as the minimization algorithm and a two-dimensional multi-region boundary element method (BEM) heat conduction code as the field variable solver. Results are presented for a regular rectangular geometry and an irregular geometry representative of a blade trailing edge and demonstrate the success of the approach in retrieving accurate heat transfer coefficient distributions.


2013 ◽  
Vol 17 (5) ◽  
pp. 1337-1342 ◽  
Author(s):  
Shu Zheng ◽  
Zixue Luo ◽  
Huaichun Zhou

In this paper, a distributed parameter model for the evaporation system of a supercritical spiral water wall boiler is developed based on a 3-D temperature field. The mathematical method is formulated for predicting the heat flux and the metal-surface temperature. The results show that the influence of the heat flux distribution is more obvious than that of the heat transfer coefficient distribution in the spiral water wall tube, and the peak of the heat transfer coefficient decreases with an increment of supercritical pressure. This distributed parameter model can be used for a 600 MW supercritical-pressure power plant.


JTAM ROTARY ◽  
2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Hairudin Hairudin ◽  
Aqli Mursadin

Theecondenser is a type of heat exchanger that functions to condense fluid. On steam powermsystems. Thevmain function ofmthe condenser is to convert steam into liquid. The purpose of this study is to determine the value and influence of heat balance, heat transfer coefficient, pressure drop and condenser efficiency.Thewresults offthissstudy indicate that in 2018 thee average heat balance (Q) was obtained at 356,017,533.46 Kj / hour while in 2019 the results of the average heat balance (Q) were 640,293,647,066 Kj / hour, fouling factor was not affect the balance sheet. The average gross heat transfer coefficient (UD) in 2018 amounted to 204,274.25 Kj / hour.m2. C and the average net heat transfer coefficient (UC) was 206,378 Kj / hr.m2. ° C whereas in 2019 the average heat transfer coefficient is obtained by the average gross heat transfer coefficient (UD) of 366,544.07 Kj / jam.m2. ° C and the Clean heat transfer coefficient (UC) is 448,554 Kj / h.m2. ° C.Fouling factor is very influential onnthe heatwtransfer coefficient because the greater the fouling in the tube will result in the inhibition of theeheat transfer rate in the tube, so that the heat transfer coefficient decreases. The pressure drop in 2018 is still within the permissible limits, with an average of 504.28 bars and 2019 of 513.03 bars. The effectiveness of the condenser in 2018 is an average of 23.330 after maintenance has been obtained, the average effectiveness of the condenser in 2019 is 40.743


2013 ◽  
Vol 58 (1) ◽  
pp. 105-112 ◽  
Author(s):  
B. Hadała ◽  
Z. Malinowski ◽  
T. Telejko ◽  
A. Szajding

The industrial hot rolling mills are equipped with systems for controlled cooling of hot steel products. In the case of strip rolling mills the main cooling system is situated at run-out table to ensure the required strip temperature before coiling. One of the most important system is laminar jets cooling. In this system water is falling down on the upper strip surface. The proper cooling rate affects the final mechanical properties of steel which strongly dependent on microstructure evolution processes. Numerical simulations can be used to determine the water flux which should be applied in order to control strip temperature. The heat transfer boundary condition in case of laminar jets cooling is defined by the heat transfer coefficient, cooling water temperature and strip surface temperature. Due to the complex nature of the cooling process the existing heat transfer models are not accurate enough. The heat transfer coefficient cannot be measured directly and the boundary inverse heat conduction problem should be formulated in order to determine the heat transfer coefficient as a function of cooling parameters and strip surface temperature. In inverse algorithm various heat conduction models and boundary condition models can be implemented. In the present study two three dimensional finite element models based on linear and non-linear shape functions have been tested in the inverse algorithm. Further, two heat transfer boundary condition models have been employed in order to determine the heat transfer coefficient distribution at the hot plate cooled by laminar jets. In the first model heat transfer coefficient distribution over the cooled surface has been approximated by the witch of Agnesi type function with the expansion in time of the approximation parameters. In the second model heat transfer coefficient distribution over the cooled plate surface has been approximated by the surface elements serendipity family with parabolic shape functions. The heat transfer coefficient values at surface element nodes have been expanded in time by the cubic-spline functions. The numerical tests have shown that in the case of heat conduction model based on linear shape functions inverse solution differs significantly from the searched boundary condition. The dedicated finite element heat conduction model based on non-linear shape functions has been developed to ensure inverse determination of heat transfer coefficient distribution over the cooled surface in the time of cooling. The heat transfer coefficient model based on surface elements serendipity family is not limited to a particular form of the heat flux distribution. The solution has been achieved for measured temperatures of the steel plate cooled by 9 laminar jets.


2012 ◽  
Vol 504-506 ◽  
pp. 1055-1060 ◽  
Author(s):  
Zbigniew Malinowski ◽  
Tadeusz Telejko ◽  
Beata Hadala ◽  
Agnieszka Cebo-Rudnicka

Plate and strip hot rolling lines are equipped with water cooling systems used to control the deformed material temperature. This system has a great importance in the case of thermal - mechanical deformation of steel which is focused on formation a proper microstructure and mechanical properties. The desired rate of cooling is achieved by water spray or laminar cooling applied to the hot surface of a strip. The water flow rate and pressure can be changed in a wide range and it will result in a very different heat transfer from the cooled material to the cooling water. The suitable cooling rate and the deformed material temperature can be determined based on numerical simulations. In this case thermal boundary conditions have to be specified on the cooled surface. The determination of the heat transfer coefficient distribution in the area of the water spray nozzle would improve numerical simulations significantly. In the paper an attempt is made to determine the heat transfer coefficient distribution on the hot plate surface cooled by the water spray nozzle. In the inverse method direct axially symmetrical and three dimensional solutions to the plate temperature field have been implemented. The computation time and the achieved accuracy have been compared for five cases. The studied cases differed in the maximum value of the heat transfer coefficient in nozzle spray axis and its distribution in the cooling time.


1989 ◽  
Vol 111 (4) ◽  
pp. 497-501 ◽  
Author(s):  
V. Krishnamoorthy ◽  
S. P. Sukhatme

This paper describes the results of systematic investigations undertaken to study the effect of free-stream turbulence on the heat transfer coefficient distribution around gas turbine rotor blades and nozzle guide vanes. The heat transfer coefficient distribution around the blade surface was obtained under a uniform heat flux boundary condition. Experiments were conducted in the Reynolds number range 2.0–8.1 × 105 (exit Mach number range 0.182 to 0.600) with the free-stream turbulence level in the range 1.0–21.3 percent. A new type of active turbulence generator was used for generating high turbulence levels. Correlations were obtained for the effect of free-stream turbulence on the local heat transfer coefficient in the laminar, transitional, and turbulent boundary layer regions.


Author(s):  
Fatemeh Hassanipour ◽  
Jose´ Lage

This study proposes a new cooling concept using encapsulated phase-change material particles in mini-channels. This novel method is inspired by the gas exchange process in the lung capillaries. An important characteristic of capillary blood flow is that the red blood cells fit very snugly into the capillary opening. Hence, it is conjectured that using particles with diameter similar to the channel diameter, in a manner similar to red blood cells in lung capillaries, is likely to enhance the heat transfer coefficient, even under laminar flow. Preliminary tests are performed with encapsulated Octadecan paraffin (C18H38) in a low-conductivity thin melamine shell, flowing through a test module. The effect of flow rate on the heat transfer coefficient and also the effect of using particles on enhancement of Nusselt number has been measured. Temperature distribution on the chip has also been investigated under various particle concentrations, heat fluxes and Reynolds numbers.


Sign in / Sign up

Export Citation Format

Share Document