scholarly journals Dynamic and Adjustable New Pattern Four-Vector SVPWM Algorithm for Application in a Five-Phase Induction Motor

Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1856 ◽  
Author(s):  
Jinhong Li ◽  
Dawei Meng

In order to improve the Direct Current (DC) bus utilization ratio and realize harmonic suppression of a five-phase induction motor, the SVPWM (Space Vector Pulse Width Modulation) algorithm was researched in depth. Based on an analysis of the present SVPWM algorithm and the volt-second balance principle, a dynamic and adjustable new pattern four-vector SVPWM algorithm was proposed. The algorithm uses the modulation index and zero vector to improve the characteristics of the inductor motor, the function relationship with real-time dynamic ratio between the action–time ratio of the space voltage vector and the modulation index was proposed to maximize DC bus utilization ratio, and the random zero-vector dynamic modulation mode was used to reduce harmonic influence, being able to spread harmonics concentrated around certain frequencies across a wider frequency band and thus produce a more continuous and uniform power spectrum. The new algorithm model was built using Matlab/Simulink, and the simulation and experimental results demonstrated that the algorithm is effective and feasible.

Author(s):  
Olwi A. Elkholi ◽  
Mohamed A. Enany ◽  
Ahmed F. Abdo ◽  
Mahmoud Eid

<p class="Abstract">Due to their better DC bus utilization and easier digital realization, Space Vector Pulse Width Modulation (SVPWM) scheme is the most widely used PWM scheme. Also two level inverter is the traditional frequency converter because it has fewer components and is lower complex to control, but on the other hand it generates higher harmonic distortion. This paper presents the realization of novel SVPWM approaches applied to the three phase induction motor drives. Specifically various schemes are based on using more combinations of step operation in each cycle to approximate the reference vector, such as 24 and 48 step operations in each cycle. The basic principle of conventional SVPWM with different modulation index M is presented. The switching sequences of new approaches are described. The modulation signals waveforms, DC bus voltage utilization, De-rated motor torque, standard error of average torque, voltage and current harmonic of new approaches are analyzed by the MATLAB/SIMULINK software. The results confirms that 48 step SVPWM approach is the best compared to other approaches.</p>


2012 ◽  
Vol 466-467 ◽  
pp. 809-813
Author(s):  
Zhan Jun Yuan ◽  
Jin Wang

In order to improve voltage utilization ratio and dynamic performance of frequency converter, this paper presents a digital frequency converter design scheme based on digital signal processor TMS320LF2407A and the theory of space vector pulse width modulation (SVPWM) technology, provides its detailed design measures of software and hardware and SVPWM algorithm realization methods. The experimental results prove that this new frequency converter has simple structure, high control precision, higher voltage utilization ratio, better dynamic and static property.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Mohannad Jabbar Mnati ◽  
Dimitar V. Bozalakov ◽  
Alex Van den Bossche

Nowadays, most three-phase, “off the shelf” inverters use electrolytic capacitors at the DC bus to provide short term energy storage. However, this has a direct impact on inverter lifetime and the total cost of the photovoltaic system. This article proposes a novel control strategy called a 120° bus clamped PWM (120BCM). The 120BCM modulates the DC bus and uses a smaller DC bus capacitor value, which is typical for film capacitors. Hence, the inverter lifetime can be increased up to the operational lifetime of the photovoltaic panels. Thus, the total cost of ownership of the PV system will decrease significantly. Furthermore, the proposed 120BCM control strategy modulates only one phase current at a time by using only one leg to perform the modulation. As a result, switching losses are significantly reduced. The full system setup is designed and presented in this paper with some practical results.


2020 ◽  
Author(s):  
Adhavan Balashanmugham ◽  
Maheswaran Mockaisamy ◽  
Sathiyanathan Murugesan

The asynchronous or Induction Motor (IM) is one of the most widely used electrical machines in the world, due to the three following advantages namely 1.Their construction is simple and rugged 2.The absence of slip rings, commutators and brushes make it cheaper, and 3.It is also maintenance free compared to DC motors and Synchronous motor due to wear and tear of brushes, slip rings and commutators respectively. The Section 1 deals with the introduction of induction motor and Direct Torque Control scheme. Section 2 briefly discusses the types of Induction motor. Section 3 tells about the control strategies of Induction motor respectively scalar control and vector control, and also briefly explains about Direct Torque Control (DTC) method. The Section 4 discuss about the Types of Control Strategies for Torque ripple Reductions in DTC as well as the two proposed schemes namely 1.Fuzzy Logic Controller (FLC) for DTC-SVM and 2.Artificial Neural Network (ANN) controller for DTC-SVM respectively for IM and its results, The two proposed schemes uses Hybrid Asymmetric Space Vector Pulse Width Modulation (HASVPWM) for switching the inverter. The Section 5 revels about the modern advanced techniques such as ANN and FLC based DTC.


2007 ◽  
Vol 4 (2) ◽  
pp. 171-187 ◽  
Author(s):  
S. Jeevananthan ◽  
R. Nandhakumar ◽  
P. Dananjayan

This paper deals with a novel natural sampled pulse width modulation (PWM) switching strategy for voltage source inverter through carrier modification. The proposed inverted sine carrier PWM (ISCPWM) method, which uses the conventional sinusoidal reference signal and an inverted sine carrier, has a better spectral quality and a higher fundamental component compared to the conventional sinusoidal PWM (SPWM) without any pulse dropping. The ISCPWM strategy enhances the fundamental output voltage particularly at lower modulation index ranges while keeping the total harmonic distortion (THD) lower without involving changes in device switching losses. The presented mathematical preliminaries for both SPWM and ISCPWM give a conceptual understanding and a comparison of the strategies. The detailed comparison of the harmonic content and fundamental component of the ISCPWM output for different values of modulation index with the results obtained for the SPWM is also presented. Finally, the proposed modulator has been implemented in field programmable gate array (FPGA- Xilinx Spartan 3) and tested with the proto-type inverter.


Sign in / Sign up

Export Citation Format

Share Document