scholarly journals Screening of the Effective Additive to Inhibit Surfactin from Forming Precipitation with Divalent Cations for Surfactin Enhanced Oil Recovery

Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2430 ◽  
Author(s):  
Nao Miyazaki ◽  
Yuichi Sugai ◽  
Kyuro Sasaki ◽  
Yoshifumi Okamoto ◽  
Satohiro Yanagisawa

Surfactin, which is an anionic bio-surfactant, can be effective for enhanced oil recovery because it decreases interfacial tension between oil and water. However, it forms precipitation by binding with divalent cations. This study examined the countermeasure to prevent surfactin from forming precipitation for applying it to enhanced oil recovery. Alcohols, chelating agents, a cationic surfactant and an ion capturing substance were selected as the candidates for inhibiting surfactin from forming precipitation. Citric acid and trisodium citrate were selected as promising candidates through the measurements of turbidity of the mixture of the candidate, surfactin and calcium ions. Those chemicals also had a function as a co-surfactant for surfactin. However, the permeability of the Berea sandstone core into which the solution containing surfactin and trisodium citrate was injected was decreased significantly, whereas citric acid could be injected into the core without significant permeability reduction. Citric acid was therefore selected as the best inhibitor and subjected to the core flooding experiments. High enhancement of oil recovery of 9.4% (vs. original oil in place (OOIP)) was obtained and pressure drop was not increased during the injection of surfactin and citric acid. Those results suggest that citric acid has a dual role as the binding inhibitor and co-surfactant for surfactin.

2021 ◽  
Author(s):  
Ahmad Ali Manzoor

Chemical-based enhanced oil recovery (EOR) techniques utilize the injection of chemicals, such as solutions of polymers, alkali, and surfactants, into oil reservoirs for incremental recovery. The injection of a polymer increases the viscosity of the injected fluid and alters the water-to-oil mobility ratio which in turn improves the volumetric sweep efficiency. This research study aims to investigate strategies that would help intensify oil recovery with the polymer solution injection. For that purpose, we utilize a lab-scale, cylindrical heavy oil reservoir model. Furthermore, a dynamic mathematical black oil model is developed based on cylindrical physical model of homogeneous porous medium. The experiments are carried out by injecting classic and novel partially hydrolyzed polyacrylamide solutions (concentration: 0.1-0.5 wt %) with 1 wt % brine into the reservoir at pressures in the range, 1.03-3.44 MPa for enhanced oil recovery. The concentration of the polymer solution remains constant throughout the core flooding experiment and is varied for other subsequent experimental setup. Periodic pressure variations between 2.41 and 3.44 MPa during injection are found to increase the heavy oil recovery by 80% original-oil-in-place (OOIP). This improvement is approximately 100% more than that with constant pressure injection at the maximum pressure of 3.44 MPa. The experimental oil recoveries are in fair agreement with the model calculated oil production with a RMS% error in the range of 5-10% at a maximum constant pressure of 3.44 MPa.


2012 ◽  
Vol 496 ◽  
pp. 542-545
Author(s):  
Xiang Ping Kong

The enhanced oil recovery characteristics of a Geobacillus sp. was investigated by shake flask experiments, blind-tube oil displacement experiments and core flooding tests. The strain exhibited good properties such as resisting high temperature, taking different types of crude oil as the sole carbon source, reducing the viscosity of crude oil, emulsifying and dispersing crude oil or liquid wax. The oil in the dead area could be effectively driven out by the strain, and the oil recovery of original oil in place had been increased by 12.9-15.9% after 5 treatments in 50 days by adopting air-assistant technique (air/liquid 10:1, v/v) due to the synergistic effect of the bacteria and their metabolites such as biogas and biosurfactants. The strain seems to be a promising candidate for microbial enhanced oil recovery and underground sewage treatment technology.


2011 ◽  
Vol 365 ◽  
pp. 326-331 ◽  
Author(s):  
Yue Hui She ◽  
Fu Chang Shu ◽  
Zheng Liang Wang ◽  
Long Jiang Yu

Culture-based techniques were applied to analyze the diversity of indigenous microbial communities in the Qinghai middle salinity petroleum reservoir (QH-MSPR). The results of the most probable number (MPN) method indicated there was an abundance of indigenous microbes (105-106MPN/ml). Two isolations (BIOS682) from the QH-MSPR were identified as Brevibacillus agri and Brevibacillus levickii. The study showed that BIOS682 enhanced the degradation rate of Huatugou crude oil. The viscosity and freezing point of crude oil after treatment by BIOS682 were all decreased. The results of TLC and FTIR spectrum analysis of the biosurfactant produced by BIOS682 indicated that it was identical to that of lipopeptide. The core-flooding tests showed that the incremental oil recoveries were 7.05-10.15%. Thus, BIOS682 may provide a viable application of microbial enhanced oil recovery (MEOR).


2021 ◽  
Author(s):  
Ahmad Ali Manzoor

Chemical-based enhanced oil recovery (EOR) techniques utilize the injection of chemicals, such as solutions of polymers, alkali, and surfactants, into oil reservoirs for incremental recovery. The injection of a polymer increases the viscosity of the injected fluid and alters the water-to-oil mobility ratio which in turn improves the volumetric sweep efficiency. This research study aims to investigate strategies that would help intensify oil recovery with the polymer solution injection. For that purpose, we utilize a lab-scale, cylindrical heavy oil reservoir model. Furthermore, a dynamic mathematical black oil model is developed based on cylindrical physical model of homogeneous porous medium. The experiments are carried out by injecting classic and novel partially hydrolyzed polyacrylamide solutions (concentration: 0.1-0.5 wt %) with 1 wt % brine into the reservoir at pressures in the range, 1.03-3.44 MPa for enhanced oil recovery. The concentration of the polymer solution remains constant throughout the core flooding experiment and is varied for other subsequent experimental setup. Periodic pressure variations between 2.41 and 3.44 MPa during injection are found to increase the heavy oil recovery by 80% original-oil-in-place (OOIP). This improvement is approximately 100% more than that with constant pressure injection at the maximum pressure of 3.44 MPa. The experimental oil recoveries are in fair agreement with the model calculated oil production with a RMS% error in the range of 5-10% at a maximum constant pressure of 3.44 MPa.


2021 ◽  
Author(s):  
Yongsheng Tan ◽  
Qi Li ◽  
Liang Xu ◽  
Xiaoyan Zhang ◽  
Tao Yu

<p>The wettability, fingering effect and strong heterogeneity of carbonate reservoirs lead to low oil recovery. However, carbon dioxide (CO<sub>2</sub>) displacement is an effective method to improve oil recovery for carbonate reservoirs. Saturated CO<sub>2</sub> nanofluids combines the advantages of CO<sub>2</sub> and nanofluids, which can change the reservoir wettability and improve the sweep area to achieve the purpose of enhanced oil recovery (EOR), so it is a promising technique in petroleum industry. In this study, comparative experiments of CO<sub>2</sub> flooding and saturated CO<sub>2</sub> nanofluids flooding were carried out in carbonate reservoir cores. The nuclear magnetic resonance (NMR) instrument was used to clarify oil distribution during core flooding processes. For the CO<sub>2</sub> displacement experiment, the results show that viscous fingering and channeling are obvious during CO<sub>2</sub> flooding, the oil is mainly produced from the big pores, and the residual oil is trapped in the small pores. For the saturated CO<sub>2</sub> nanofluids displacement experiment, the results show that saturated CO<sub>2</sub> nanofluids inhibit CO<sub>2</sub> channeling and fingering, the oil is produced from the big pores and small pores, the residual oil is still trapped in the small pores, but the NMR signal intensity of the residual oil is significantly reduced. The final oil recovery of saturated CO<sub>2</sub> nanofluids displacement is higher than that of CO<sub>2</sub> displacement. This study provides a significant reference for EOR in carbonate reservoirs. Meanwhile, it promotes the application of nanofluids in energy exploitation and CO<sub>2</sub> utilization.</p>


2021 ◽  
Author(s):  
Tinuola Udoh

Abstract In this paper, the enhanced oil recovery potential of the application of nanoparticles in Niger Delta water-wet reservoir rock was investigated. Core flooding experiments were conducted on the sandstone core samples at 25 °C with the applications of nanoparticles in secondary and tertiary injection modes. The oil production during flooding was used to evaluate the enhanced oil recovery potential of the nanoparticles in the reservoir rock. The results of the study showed that the application of nanoparticles in tertiary mode after the secondary formation brine flooding increased oil production by 16.19% OIIP. Also, a comparison between the oil recoveries from secondary formation brine and nanoparticles flooding showed that higher oil recovery of 81% OIIP was made with secondary nanoparticles flooding against 57% OIIP made with formation brine flooding. Finally, better oil recovery of 7.67% OIIP was achieved with secondary application of nanoparticles relative to the tertiary application of formation brine and nanoparticles flooding. The results of this study are significant for the design of the application of nanoparticles in Niger Delta reservoirs.


2014 ◽  
Vol 1024 ◽  
pp. 83-86 ◽  
Author(s):  
Mohamad Sahban Alnarabiji ◽  
Noorhana Yahya ◽  
Sharifa Bee Abd Hamid ◽  
Khairun Azizi Azizli ◽  
Afza Shafie ◽  
...  

Synthesising zinc oxide nanoparticles to get certain specific characteristics to be applied in Enhanced oil recovery (EOR) is still challenging to date. In this work, zinc oxide (ZnO) nanoparticles were synthesised using the sol-gel method by dissolving zinc nitrate hexahydrate in nitric acid. The ZnO crystal and particles morphology and structure were determined using X-ray Diffractometer (XRD) and Field Emission Scanning Electron Microscope (FESEM). In this study, a microwave oven was used for annealing ZnO without insulating a sample in any casket. The results show that 30 and 40 minutes of annealing and stirring for 1 hour influenced the morphology and size of zinc oxide particles in nanoscale. These parameters could be tailored to generate a range of nanoparticle morphology (agglomerated nanoparticles in a corn-like morphology), a crystal size with the mean size of 70.5 and 74.9 nm and a main growth at the peak [10. EOR experiment were conducted by dispersing 0.10 wt% ZnO NPs in distilled water to form a ZnO nanofluid. Then the fluid was injected into the medium in the 3rd stage of the oil recovery to present EOR stage. It was found that ZnO nanofluid has the ability to extract 8% of the original oil in place (OOIP).


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4212
Author(s):  
Mohamed Said ◽  
Bashirul Haq ◽  
Dhafer Al Shehri ◽  
Mohammad Mizanur Rahman ◽  
Nasiru Salahu Muhammed ◽  
...  

Tertiary oil recovery, commonly known as enhanced oil recovery (EOR), is performed when secondary recovery is no longer economically viable. Polymer flooding is one of the EOR methods that improves the viscosity of injected water and boosts oil recovery. Xanthan gum is a relatively cheap biopolymer and is suitable for oil recovery at limited temperatures and salinities. This work aims to modify xanthan gum to improve its viscosity for high-temperature and high-salinity reservoirs. The xanthan gum was reacted with acrylic acid in the presence of a catalyst in order to form xanthan acrylate. The chemical structure of the xanthan acrylate was verified by FT-IR and NMR analysis. The discovery hybrid rheometer (DHR) confirmed that the viscosity of the modified xanthan gum was improved at elevated temperatures, which was reflected in the core flood experiment. Two core flooding experiments were conducted using six-inch sandstone core plugs and Arabian light crude oil. The first formulation—the xanthan gum with 3% NaCl solution—recovered 14% of the residual oil from the core. In contrast, the modified xanthan gum with 3% NaCl solution recovered about 19% of the residual oil, which was 5% higher than the original xanthan gum. The xanthan gum acrylate is therefore more effective at boosting tertiary oil recovery in the sandstone core.


Sign in / Sign up

Export Citation Format

Share Document