scholarly journals Nanomaterial-Based Drilling Fluids for Exploitation of Unconventional Reservoirs: A Review

Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3417 ◽  
Author(s):  
Muhammad Ali ◽  
Husna Hayati Jarni ◽  
Adnan Aftab ◽  
Abdul Razak Ismail ◽  
Noori M. Cata Saady ◽  
...  

The world’s energy demand is steadily increasing where it has now become difficult for conventional hydrocarbon reservoir to meet levels of demand. Therefore, oil and gas companies are seeking novel ways to exploit and unlock the potential of unconventional resources. These resources include tight gas reservoirs, tight sandstone oil, oil and gas shales reservoirs, and high pressure high temperature (HPHT) wells. Drilling of HPHT wells and shale reservoirs has become more widespread in the global petroleum and natural gas industry. There is a current need to extend robust techniques beyond costly drilling and completion jobs, with the potential for exponential expansion. Drilling fluids and their additives are being customized in order to cater for HPHT well drilling issues. Certain conventional additives, e.g., filtrate loss additives, viscosifier additives, shale inhibitor, and shale stabilizer additives are not suitable in the HPHT environment, where they are consequently inappropriate for shale drilling. A better understanding of the selection of drilling fluids and additives for hydrocarbon water-sensitive reservoirs within HPHT environments can be achieved by identifying the challenges in conventional drilling fluids technology and their replacement with eco-friendly, cheaper, and multi-functional valuable products. In this regard, several laboratory-scale literatures have reported that nanomaterial has improved the properties of drilling fluids in the HPHT environment. This review critically evaluates nanomaterial utilization for improvement of rheological properties, filtrate loss, viscosity, and clay- and shale-inhibition at increasing temperature and pressures during the exploitation of hydrocarbons. The performance and potential of nanomaterials, which influence the nature of drilling fluid and its multi-benefits, is rarely reviewed in technical literature of water-based drilling fluid systems. Moreover, this review presented case studies of two HPHT fields and one HPHT basin, and compared their drilling fluid program for optimum selection of drilling fluid in HPHT environment.

Author(s):  
Abdul Razak Ismail ◽  
W. R. W Sulaiman ◽  
M. Z. Jaafar ◽  
A. Aftab ◽  
A. A. Razi ◽  
...  

Drilling fluid is the key component to drill oil and gas wells. The rheological behavior of drilling fluid will be affected when drilling deep wells especially at high temperature and high pressure reservoir. This research was conducted to study the effect of the nanoparticles over the rheological properties of the drilling fluid when aging at high temperature condition. Several drilling fluids were prepared using synthetic based fluids (Sarapar and Saraline) to study the effect of multi-walled carbon nanotube (MWCNT) at different concentrations. The rheological properties of drilling fluid were analyzed after aging at 250 °F and 350 °F for 16 hours. The results revealed that the addition of MWCNT improved the 10-sec gel strength by 33% and filtrate loss volume was reduced to 10% after aging at 250°F in Saraline drilling fluid. Moreover, the plastic viscosity of Saraline and Sarapar drilling fluid after addition of MWCNT was enhanced by 6% and 27% at 350 °F. Filtrate loss volume of Sarapar drilling fluid was reduced by 19 % after aging at 250 °F for 16 hours. The overall results showed that the addition of MWCNT into the drilling fluid have slightly improved the rheological properties of drilling fluids under high temperature conditions.


Author(s):  
Gilles Numkam ◽  
Babak Akbari

Abstract Global energy demand continues to drive oil and gas exploration in increasingly challenging environments. The extreme temperatures and pressures drilling fluids are subjected to require optimum design of their rheology. Among the numerous components used in the design of drilling fluids are surfactants. Surfactants play an important role in the emulsification of immiscible liquids as well as the alteration of cuttings wettability to facilitate transport to the surface. Nonionic surfactants, depending on their chemical group allow the inversion of oil-in-water emulsions (O/W) to water-in-oil (W/O) and vice-versa depending on the direction of temperature change. In this study, emulsion-suspension samples were prepared with different nonionic surfactants at Oil:Water ratios of 50:50 and 60:40. The mechanical properties of the samples was assessed using a scientific rheometer at temperatures ranging from 0–90 °C. Phase inversion from oil-in-water to water-in-oil was observed for samples stabilized by polyoxyethylene oleyl ether surfactants. Build up in the apparent viscosity of the samples was observed following phase inversion, mainly resulting from the formation of nanosized dispersed water droplets. Findings in the study highlighted the possibility of obtaining different drilling fluid types during downhole circulation, thereby paving a path for the design optimization of drilling fluids used in offshore operations.


Author(s):  
Muhammad Ali ◽  
Adnan Aftab

The world’s energy demand is steadily increasing where it has now become not easy for conventional hydrocarbon reservoirs to meet levels of demand. Therefore, oil and gas companies are seeking novel ways to exploit and unlock the potential of unconventional resources. Drilling of high-pressure high-temperature (HPHT) wells and shale reservoirs has become more widespread in the global petroleum and natural gas industry. There is a current need to extend robust techniques beyond costly drilling and completion jobs, with the potential for exponential expansion. This paper explains a better understanding of the selection of drilling fluids and additives for unconventional hydrocarbon reservoirs. 


Author(s):  
Muhammad Awais Ashfaq Alvi ◽  
Mesfin Belayneh ◽  
Arild Saasen ◽  
Kjell Kåre Fjelde ◽  
Bernt S. Aadnøy

In recent years, the application of nanomaterial has been attracting the oil and gas industry. Nanomaterials research results show an improving performance of cement, drilling fluid and enhanced oil recovery. In this paper, the effect of multi-walled carbon nanotube (MWCNT) and MWCNT functionalized with ligands–OH and - COOH nanoparticles on laboratory drilling fluids formulated from bentonite, KCL, Carboxymethyl cellulose (CMC) and xanthan gum (XG) was studied. The formulations and tests were performed at room temperature. The results show that addition of 0.0095wt.% of MWCNT, MWCNT-OH and MWCNT-COOH nanoparticles in CMC/bentonite system decreases the filtrate-loss by 8.6 %, 7.1 % and 17.9 % respectively. These particles also decreased the coefficient of friction by 34 %, 37 % and 33 % respectively. In xanthan gum drilling fluid, 0.019wt%. MWCNT reduced the friction coefficient by 38 %.


Author(s):  
E.A. Flik ◽  
◽  
Y.E. Kolodyazhnaya

The article assesses the environmental safety of drilling fluids that are currently widely used in the oil and gas industry. It shows active development of water-based drilling fluid systems using xanthan biopolymer.


Author(s):  
Bunyami Shafie ◽  
Lee Huei Hong ◽  
Phene Neoh Pei Nee ◽  
Fatin Hana Naning ◽  
Tze Jin Wong ◽  
...  

Drilling mud is a dense, viscous fluid mixture used in oil and gas drilling operations to bring rock cuttings to the earth's surface from the boreholes as well as to lubricate and cool the drill bit. Water-based mud is commonly used due to its relatively inexpensive and easy to dispose of. However, several components and additives in the muds become increasingly cautious and restricted. Starch was introduced as a safe and biodegradable additive into the water-based drilling fluid, in line with an environmental health concern. In this study, the suitability of four local rice flours and their heat moistures derivatives to be incorporated in the formulation of water-based drilling fluid was investigated. They were selected due to their natural amylose contents (waxy, low, intermediate, and high). They were also heat moisture treated to increase their amylose contents. Results showed that the addition of the rice flours into water-based mud significantly reduced the density, viscosity, and filtrate volume. However, the gel strength of the mud was increased. The rice flours, either native or heat moisture treated, could serve as additives to provide a variety of low cost and environmentally friendly drilling fluids to be incorporated and fitted into different drilling activity.


2019 ◽  
Vol 141 (10) ◽  
Author(s):  
Mohamed Mahmoud

The well clean-up process involves the removal of impermeable filter cake from the formation face. This process is essential to allow the formation fluids to flow from the reservoir to the wellbore. Different types of drilling fluids such as oil- and water-based drilling fluids are used to drill oil and gas wells. These drilling fluids are weighted with different weighting materials such as bentonite, calcium carbonate, and barite. The filter cake that forms on the formation face consists mainly of the drilling fluid weighting materials (around 90%), and the rest is other additives such as polymers or oil in the case of oil-base drilling fluids. The process of filter cake removal is very complicated because it involves more than one stage due to the compatibility issues of the fluids used to remove the filter cake. Different formulations were used to remove different types of filter cake, but the problem with these methods is the removal efficiency or the compatibility. In this paper, a new method was developed to remove different types of filter cakes and to clean-up oil and gas wells after drilling operations. Thermochemical fluids that consist of two inert salts when mixed together will generate very high pressure and high temperature in addition to hot water and hot nitrogen. These fluids are sodium nitrate and ammonium chloride. The filter cake was formed using barite and calcite water- and oil-based drilling fluids at high pressure and high temperature. The removal process started by injecting 500 ml of the two salts and left for different time periods from 6 to 24 h. The results of this study showed that the newly developed method of thermochemical removed the filter cake after 6 h with a removal efficiency of 89 wt% for the barite filter cake in the water-based drilling fluid. The mechanisms of removal using the combined solution of thermochemical fluid and ethylenediamine tetra-acetic acid (EDTA) chelating agent were explained by the generation of a strong pressure pulse that disturbed the filter cake and the generation of the high temperature that enhanced the barite dissolution and polymer degradation. This solution for filter cake removal works for reservoir temperatures greater than 100 °C.


2020 ◽  
Vol 7 (2) ◽  
pp. 191230
Author(s):  
Yuhuan Bu ◽  
Rui Ma ◽  
Jiapei Du ◽  
Shenglai Guo ◽  
Huajie Liu ◽  
...  

This research work designed a novel mud-cake solidification method to improve the zonal isolation of oil and gas wells. The calculation methodology of mud-cake compressive strength was proposed. The optimal formula of activator and solid precursors, the proper activating time and the best activator concentration were determined by the compressive strength test. The effects of solid precursors on the properties of drilling fluid were evaluated. Test results show that the respective percentage of bentonite, metakaolin, slag and activator is 1 : 1 : 0.3 : 0.8, as well as the optimum ratio of Na 2 SiO 3 /NaOH is 40 : 1. The optimum concentration of activator is 0.21 and the activating time should be more than 10 min. The solid precursors did not show any bad influence on the rheological property of drilling fluids. Even though the compressive strength decreased when the solid precursors blended with barite, the strength values can still achieve 8 MPa. The reaction of metakaolin and activator formed cross-link structure in the mud-cake matrix, which enhanced the connection of the loose bentonite particles, lead to the significant enhancement of shear bonding strength and hydraulic bonding strength. This mud-cake solidification method provides a new approach to improve the quality of zonal isolation.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6718
Author(s):  
Muhammad Awais Ashfaq Alvi ◽  
Mesfin Belayneh ◽  
Sulalit Bandyopadhyay ◽  
Mona Wetrhus Minde

In recent years, several studies have indicated the impact of nanoparticles (NPs) on various properties (such as viscosity and fluid loss) of conventional drilling fluids. Our previous study with commercial iron oxide NPs indicated the potential of using NPs to improve the properties of a laboratory bentonite-based drilling fluid without barite. In the present work, iron oxide NPs have been synthesized using the co-precipitation method. The effect of these hydrophilic NPs has been evaluated in bentonite and KCl-based drilling fluids. Rheological properties at different temperatures, viscoelastic properties, lubricity, and filtrate loss were measured to study the effect of NPs on the base fluid. Also, elemental analysis of the filtrate and microscale analysis of the filter cake was performed. Results for bentonite-based fluid showed that 0.019 wt% (0.1 g) of NPs reduced the coefficient of friction by 47%, and 0.0095 wt% (0.05 g) of NPs reduced the fluid loss by 20%. Moreover, for KCl-based fluids, 0.019 wt% (0.1 g) of additive reduced the coefficient of friction by 45%, while higher concentration of 0.038 wt% (0.2 g) of NPs shows 14% reduction in the filtrate loss. Microscale analysis shows that presence of NPs in the cake structure produces a more compact and less porous structure. This study indicates that very small concentration of NPs can provide better performance for the drilling fluids. Additionally, results from this work indicate the ability of NPs to fine-tune the properties of drilling fluids.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Peng Xu ◽  
Mingbiao Xu

Oil-based drilling fluids (OBDFs) have a strong wellbore stabilization effect, but little attention has been paid to the formation damage caused by oil-based drilling fluids based on traditional knowledge, which is a problem that must be solved prior to the application of oil-based drilling fluid. For ultradeep fractured tight sandstone gas reservoirs, the reservoir damage caused by oil-based drilling fluids is worthy of additional research. In this paper, the potential damage factors of oil-based drilling fluids and fractured tight sandstone formations are analyzed theoretically and experimentally. The damage mechanism of oil-based drilling fluids for fractured tight sandstone gas reservoirs is analyzed based on the characteristics of multiphase fluids in seepage channels, the physical and chemical changes of rocks, and the rheological stability of oil-based drilling fluids. Based on the damage mechanism of oil-based drilling fluids, the key problems that must be solved during the damage control of oil-based drilling fluids are analyzed, a detailed description of formation damage characteristics is made, and how to accurately and rapidly form plugging zones is addressed. This research on damage control can provide a reference for solving the damage problems caused by oil-based drilling fluids in fractured tight sandstone gas reservoirs.


Sign in / Sign up

Export Citation Format

Share Document