scholarly journals Automated Data Filtering Approach for ANN Modeling of Distributed Energy Systems: Exploring the Application of Machine Learning

Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3750
Author(s):  
Homam Nikpey Somehsaraei ◽  
Susmita Ghosh ◽  
Sayantan Maity ◽  
Payel Pramanik ◽  
Sudipta De ◽  
...  

To realize the distributed generation and to make the partnership between the dispatchable units and variable renewable resources work efficiently, accurate and flexible monitoring needs to be implemented. Due to digital transformation in the energy industry, a large amount of data is and will be captured every day, but the inability to process them in real time challenges the conventional monitoring and maintenance practices. Access to automated and reliable data-filtering tools seems to be crucial for the monitoring of many distributed generation units, avoiding false warnings and improving the reliability. This study aims to evaluate a machine-learning-based methodology for autodetecting outliers from real data, exploring an interdisciplinary solution to replace the conventional manual approach that was very time-consuming and error-prone. The raw data used in this study was collected from experiments on a 100-kW micro gas turbine test rig in Norway. The proposed method uses Density-Based Spatial Clustering of Applications with Noise (DBSCAN) to detect and filter out the outliers. The filtered datasets are used to develop artificial neural networks (ANNs) as a baseline to predict the normal performance of the system for monitoring applications. Results show that the filtering method presented is reliable and fast, minimizing time and resources for data processing. It was also shown that the proposed method has the potential to enhance the performance of the predictive models and ANN-based monitoring.

Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2892 ◽  
Author(s):  
Jordi de la Hoz ◽  
Àlex Alonso ◽  
Sergio Coronas ◽  
Helena Martín ◽  
José Matas

The following paper aims to prove the importance of embedding the regulatory framework when analyzing the distributed generation activity of an energy community. At present, most of the scientific literature has focused on distributed energy, and energy communities address the issue of regulatory frameworks qualitatively. In this paper, the most representative regulatory frameworks devoted to the promotion of energy communities were analyzed and synthesized, namely, feed-in tariffs, net metering, and the self-consumption scheme. As a result, an algebraic model able to represent the essence of the regulatory structures related to those remuneration mechanisms was obtained. Next, this model was embedded into a physical model, based on real data, previously created. The resulting Mixed Integer Linear Program (MILP) was used to identify the implications of these frameworks. The results demonstrate the impact of regulatory schemes on energy management and economic results of an energy community. Indeed, profitability changes drastically depending on which remuneration scheme is applied to an energy community.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4618
Author(s):  
Francisco Oliveira ◽  
Miguel Luís ◽  
Susana Sargento

Unmanned Aerial Vehicle (UAV) networks are an emerging technology, useful not only for the military, but also for public and civil purposes. Their versatility provides advantages in situations where an existing network cannot support all requirements of its users, either because of an exceptionally big number of users, or because of the failure of one or more ground base stations. Networks of UAVs can reinforce these cellular networks where needed, redirecting the traffic to available ground stations. Using machine learning algorithms to predict overloaded traffic areas, we propose a UAV positioning algorithm responsible for determining suitable positions for the UAVs, with the objective of a more balanced redistribution of traffic, to avoid saturated base stations and decrease the number of users without a connection. The tests performed with real data of user connections through base stations show that, in less restrictive network conditions, the algorithm to dynamically place the UAVs performs significantly better than in more restrictive conditions, reducing significantly the number of users without a connection. We also conclude that the accuracy of the prediction is a very important factor, not only in the reduction of users without a connection, but also on the number of UAVs deployed.


1993 ◽  
Vol 18 (2-4) ◽  
pp. 209-220
Author(s):  
Michael Hadjimichael ◽  
Anita Wasilewska

We present here an application of Rough Set formalism to Machine Learning. The resulting Inductive Learning algorithm is described, and its application to a set of real data is examined. The data consists of a survey of voter preferences taken during the 1988 presidential election in the U.S.A. Results include an analysis of the predictive accuracy of the generated rules, and an analysis of the semantic content of the rules.


2021 ◽  
Vol 193 (4) ◽  
Author(s):  
Hamid Kardan Moghaddam ◽  
Sami Ghordoyee Milan ◽  
Zahra Kayhomayoon ◽  
Zahra Rahimzadeh kivi ◽  
Naser Arya Azar

Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 936
Author(s):  
Jianli Shao ◽  
Xin Liu ◽  
Wenqing He

Imbalanced data exist in many classification problems. The classification of imbalanced data has remarkable challenges in machine learning. The support vector machine (SVM) and its variants are popularly used in machine learning among different classifiers thanks to their flexibility and interpretability. However, the performance of SVMs is impacted when the data are imbalanced, which is a typical data structure in the multi-category classification problem. In this paper, we employ the data-adaptive SVM with scaled kernel functions to classify instances for a multi-class population. We propose a multi-class data-dependent kernel function for the SVM by considering class imbalance and the spatial association among instances so that the classification accuracy is enhanced. Simulation studies demonstrate the superb performance of the proposed method, and a real multi-class prostate cancer image dataset is employed as an illustration. Not only does the proposed method outperform the competitor methods in terms of the commonly used accuracy measures such as the F-score and G-means, but also successfully detects more than 60% of instances from the rare class in the real data, while the competitors can only detect less than 20% of the rare class instances. The proposed method will benefit other scientific research fields, such as multiple region boundary detection.


2021 ◽  
pp. 190-200
Author(s):  
Lesia Mochurad ◽  
Yaroslav Hladun

The paper considers the method for analysis of a psychophysical state of a person on psychomotor indicators – finger tapping test. The app for mobile phone that generalizes the classic tapping test is developed for experiments. Developed tool allows collecting samples and analyzing them like individual experiments and like dataset as a whole. The data based on statistical methods and optimization of hyperparameters is investigated for anomalies, and an algorithm for reducing their number is developed. The machine learning model is used to predict different features of the dataset. These experiments demonstrate the data structure obtained using finger tapping test. As a result, we gained knowledge of how to conduct experiments for better generalization of the model in future. A method for removing anomalies is developed and it can be used in further research to increase an accuracy of the model. Developed model is a multilayer recurrent neural network that works well with the classification of time series. Error of model learning on a synthetic dataset is 1.5% and on a real data from similar distribution is 5%.


2020 ◽  
Vol 30 (11n12) ◽  
pp. 1759-1777
Author(s):  
Jialing Liang ◽  
Peiquan Jin ◽  
Lin Mu ◽  
Jie Zhao

With the development of Web 2.0, social media such as Twitter and Sina Weibo have become an essential platform for disseminating hot events. Simultaneously, due to the free policy of microblogging services, users can post user-generated content freely on microblogging platforms. Accordingly, more and more hot events on microblogging platforms have been labeled as spammers. Spammers will not only hurt the healthy development of social media but also introduce many economic and social problems. Therefore, the government and enterprises must distinguish whether a hot event on microblogging platforms is a spammer or is a naturally-developing event. In this paper, we focus on the hot event list on Sina Weibo and collect the relevant microblogs of each hot event to study the detecting methods of spammers. Notably, we develop an integral feature set consisting of user profile, user behavior, and user relationships to reflect various factors affecting the detection of spammers. Then, we employ typical machine learning methods to conduct extensive experiments on detecting spammers. We use a real data set crawled from the most prominent Chinese microblogging platform, Sina Weibo, and evaluate the performance of 10 machine learning models with five sampling methods. The results in terms of various metrics show that the Random Forest model and the over-sampling method achieve the best accuracy in detecting spammers and non-spammers.


2019 ◽  
Vol 2019 (1) ◽  
pp. 26-46 ◽  
Author(s):  
Thee Chanyaswad ◽  
Changchang Liu ◽  
Prateek Mittal

Abstract A key challenge facing the design of differential privacy in the non-interactive setting is to maintain the utility of the released data. To overcome this challenge, we utilize the Diaconis-Freedman-Meckes (DFM) effect, which states that most projections of high-dimensional data are nearly Gaussian. Hence, we propose the RON-Gauss model that leverages the novel combination of dimensionality reduction via random orthonormal (RON) projection and the Gaussian generative model for synthesizing differentially-private data. We analyze how RON-Gauss benefits from the DFM effect, and present multiple algorithms for a range of machine learning applications, including both unsupervised and supervised learning. Furthermore, we rigorously prove that (a) our algorithms satisfy the strong ɛ-differential privacy guarantee, and (b) RON projection can lower the level of perturbation required for differential privacy. Finally, we illustrate the effectiveness of RON-Gauss under three common machine learning applications – clustering, classification, and regression – on three large real-world datasets. Our empirical results show that (a) RON-Gauss outperforms previous approaches by up to an order of magnitude, and (b) loss in utility compared to the non-private real data is small. Thus, RON-Gauss can serve as a key enabler for real-world deployment of privacy-preserving data release.


Author(s):  
A. Hanel ◽  
H. Klöden ◽  
L. Hoegner ◽  
U. Stilla

Today, cameras mounted in vehicles are used to observe the driver as well as the objects around a vehicle. In this article, an outline of a concept for image based recognition of dynamic traffic situations is shown. A dynamic traffic situation will be described by road users and their intentions. Images will be taken by a vehicle fleet and aggregated on a server. On these images, new strategies for machine learning will be applied iteratively when new data has arrived on the server. The results of the learning process will be models describing the traffic situation and will be transmitted back to the recording vehicles. The recognition will be performed as a standalone function in the vehicles and will use the received models. It can be expected, that this method can make the detection and classification of objects around the vehicles more reliable. In addition, the prediction of their actions for the next seconds should be possible. As one example how this concept is used, a method to recognize the illumination situation of a traffic scene is described. This allows to handle different appearances of objects depending on the illumination of the scene. Different illumination classes will be defined to distinguish different illumination situations. Intensity based features are extracted from the images and used by a classifier to assign an image to an illumination class. This method is being tested for a real data set of daytime and nighttime images. It can be shown, that the illumination class can be classified correctly for more than 80% of the images.


Sign in / Sign up

Export Citation Format

Share Document