scholarly journals Thickness Optimization and Photovoltaic Properties of Bulk Heterojunction Solar Cells Based on PFB–PCBM Layer

Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5915
Author(s):  
Sayed Izaz Uddin ◽  
Muhammad Tahir ◽  
Fakhra Aziz ◽  
Mahidur R. Sarker ◽  
Fida Muhammad ◽  
...  

We report on the fabrication and study of bulk heterojunction (BHJ) solar cells based on a novel combination of a donor–acceptor poly(9,9-dioctylfluorenyl-2,7-diyl)-co-(N,N0-diphenyl)-N,N′di(p-butyl-oxy-pheyl)-1,4-diamino-benzene) (PFB) and [6, 6]-phenyl-C61-butyric acid methyl ester (PCBM) blend composed of 1:1 by volume. indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate (PEDOT:PSS)/PFB–PCBM/Ag BHJ solar cells are fabricated by a facile cost-effective spin-coating technique. The thickness of the active film (PFB–PCBM) plays an important role in the efficiency of light absorption, exciton creation, and dissociation into free charges that results in higher power conversion efficiency (PCE). In order to optimize the PCE as a function of active layer thickness, a number of solar cells are fabricated with different thicknesses of PFB–PCBM films at 120, 140, 160, 180, and 200 nm, and their photovoltaic characteristics are investigated. It is observed that the device with a 180 nm thick film demonstrates a maximum PCE of 2.9% with a fill factor (FF) of 53% under standard testing conditions (STC) (25 °C, 1.5 AM global, and 100 mW/cm2). The current–voltage (I-V) properties of the ITO/PEDOT:PSS/PFB–PCBM/Ag BHJ devices are also measured in dark conditions to measure and understand different parameters of the heterojunction. Atomic force microscopy (AFM) and ultraviolet-visible (UV-vis) absorption spectroscopy for the PFB–PCBM film of optimal thickness (180 nm) are carried out to understand the effect of surface morphology on the PCE and bandgap of the blend, respectively. The AFM micrographs show a slightly non-uniform and rough surface with an average surface roughness (Ra) of 29.2 nm. The UV-vis measurements of the PFB–PCBM blend exhibit a reduced optical bandgap of ≈2.34 eV as compared to that of pristine PFB (2.88 eV), which results in an improved absorption of light and excitons generation. The obtained results for the ITO/PEDOT:PSS/PFB–PCBM (180 nm)/Ag BHJ device are compared with the ones previously reported for the P3HT–PCBM blend with the same film thickness. It is observed that the PFB–PCBM-based BHJ device has shown two times higher open circuit voltage (Voc) and, hence, enhanced the efficiency.

2017 ◽  
Vol 866 ◽  
pp. 350-353
Author(s):  
Viruntachar Kruefu ◽  
Chanitpa Khantha ◽  
Jatuphorn Wootthikanokkhan ◽  
Sukon Phanichphant

The synthesis, characterizations, and photovoltaic studies of copolymer based on 4,4-dodecylpentaleno[1,2-b]dithiophene (PC12PDT) and 5-octyl-5H-thieno[3,4-c]pyrrole-4,6-dione (TPD) were described. The PC12PDTTPD copolymer achieved a high open circuit voltage (Voc) of ~ 0.8-0.9 V. Bulk-heterojunction (BHJ) solar cells were fabricated by using chlorobenzene with 1% chloronapthalene as the solvent additive. The ZnO nanoparticles, produced by flame spray pyrolysis (FSP), were dispersed in 1-butanol. After that, it was loaded into the devices along with [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) used as the electron acceptor. From the results, it was found that the ZnO nanoparticles with different amount had the effect on the power conversion efficiency (PCE) of the solar cells. The PCE obtained in this study (3.33%) was found in the 5.45 wt% ZnO loaded device. This was an improvement as compared to that of the standard device (2.45%).


2015 ◽  
Vol 1132 ◽  
pp. 116-124 ◽  
Author(s):  
Joseph Asare ◽  
B. Agyei-Tuffour ◽  
O.K. Oyewole ◽  
G.M. Zebaze-Kana ◽  
W.O. Soboyejo

This research investigates the effects of bending on the electrical, optical, structural and mechanical properties of flexible organic photovoltaic (OPV) cells. Bulk heterojunction organic solar cells were fabricated on Polyethylene terephthalate (PET) substrates using Poly-3-hexylthiophene: [6, 6]-phenyl-C61-butyric acid methyl ester (P3HT: PCBM) as the active layer and Poly (3, 4-ethylenedioxythiophene) Polystyrenesulfonate (PEDOT: PSS) as the hole injection layer. All the organic layers were deposited by spin coating while the Al cathode was vacuum thermally evaporated. The Indium Tin Oxide (ITO) anode has an average optical transmittance of 85% in the visible spectrum, a sheet resistivity of 60 ohms per square and an average surface roughness of 3nm. The relationship between the optoelectronic performance of the various device layers and the applied mechanical strains has been analyzed. The effects of stress and strain on the current-voltage characteristics of the device and its failure were modeled using the Abaqus software.


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1314 ◽  
Author(s):  
Edison Castro ◽  
Albert Artigas ◽  
Anna Pla-Quintana ◽  
Anna Roglans ◽  
Fang Liu ◽  
...  

The synthesis, characterization, and incorporation of open-cage [60]fullerene derivatives as electron-transporting materials (ETMs) in perovskite solar cells (PSCs) with an inverted planar (p-i-n) structure is reported. Following optical and electrochemical characterization of the open-cage fullerenes 2a–c, p-i-n PSCs with a indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS)/perovskite/fullerene/Ag structure were prepared. The devices obtained from 2a–b exhibit competitive power conversion efficiencies (PCEs) and improved open-circuit voltage (Voc) values (>1.0 V) in comparison to a reference cell based on phenyl-C61-butyric-acid methyl-ester (PC61BM). These results are rationalized in terms of a) the higher passivation ability of the open-cage fullerenes with respect to the other fullerenes, and b) a good overlap between the highest occupied molecular orbital/lowest unoccupied molecular orbital (HOMO/LUMO) levels of 2a–b and the conduction band of the perovskite.


2008 ◽  
Vol 1091 ◽  
Author(s):  
Osamu Yoshikawa ◽  
Taro Sonobe ◽  
Takashi Sagawa ◽  
Susumu Yoshikawa

AbstractThe performance of the devices of bulk heterojunction polymer-based solar cells were investigated by using poly(3-hexylthiophene) (P3HT) and (6,6)-phenyl C61 butyric acid methyl ester (PCBM) as light absorption (viz. active) layer, with TiOx as interlayer as follows: ITO/PEDOT:PSS/P3HT-PCBM/TiOx/Al [1] through the treatment of microwave irradiation (single mode of 2.45 GHz, 800 W for 1, 2.5, or 5 min). Such treatments enabled to increase the short-circuit current density Jsc (from 4.53 mA cm−2 to 7.27 mA cm−2) and fill factor FF (from 0.41 to 0.66) of the cell, though the open circuit voltage Voc was decreased (from 0.61 V to 0.57 V) along the irradiation. Absorption spectra of P3HT-PCBM blended film before and after the microwave treatment were observed. Shoulders at 550 nm and 600 nm appeared after the irradiation. This result implies that the microcrystallization of P3HT was slightly promoted through the microwave treatment.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 42
Author(s):  
Guan-Zhi Liu ◽  
Chi-Shiuan Du ◽  
Jeng-Yue Wu ◽  
Bo-Tau Liu ◽  
Tzong-Ming Wu ◽  
...  

In this study, we improved the photovoltaic (PV) properties and storage stabilities of inverted perovskite solar cells (PVSCs) based on methylammonium lead iodide (MAPbI3) by employing bathocuproine (BCP)/poly(methyl methacrylate) (PMMA) and BCP/polyvinylpyrrolidone (PVP) as hole-blocking and electron-transporting interfacial layers. The architecture of the PVSCs was indium tin oxide/poly(3,4-ethylenedioxythiophene):polystyrenesulfonate/MAPbI3/[6,6]-phenyl-C61-butyric acid methyl ester/BCP based interfacial layer/Ag. The presence of PMMA and PVP affected the morphological stability of the BCP and MAPbI3 layers. The storage-stability of the BCP/PMMA-based PVSCs was enhanced significantly relative to that of the corresponding unmodified BCP-based PVSC. Moreover, the PV performance of the BCP/PVP-based PVSCs was enhanced when compared with that of the unmodified BCP-based PVSC. Thus, incorporating hydrophobic polymers into BCP-based hole-blocking/electron-transporting interfacial layers can improve the PV performance and storage stability of PVSCs.


2013 ◽  
Vol 3 (2) ◽  
Author(s):  
Kazumi Yoshida ◽  
Takeo Oku ◽  
Atsushi Suzuki ◽  
Tsuyoshi Akiyama ◽  
Katsuhisa Tokumitsu ◽  
...  

AbstractPolysilane/fullerene bulk heterojunction solar cells were fabricated on indium tin oxide electrodes by a spin-coating method, and performance and microstructures of the solar cells were investigated. Decaphenylcyclopentasilane (PDPS), polymethlyphenylsilane (PMPS) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) were used for the solar cells. The conversion efficiencies of PDPS:PCBM solar cells were higher than those of PMPS:PCBM devises. Transmission electron microscopy and X-ray diffraction indicated that PDPS:PCBM layer had a nanocomposite structure.


2015 ◽  
Vol 137 (3) ◽  
Author(s):  
M. Nasiri ◽  
F. Abbasi

Effect of 1,8-diiodooctane on the performance of poly(3-hexylthiophene) (P3HT):[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) solar cells with glass/indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/P3HT: PCBM/Ca/Al structure was studied. The morphology and thickness of the active layer were investigated using atomic force microscopy (AFM). The UV-visible spectroscopy and X-ray diffraction (XRD) analysis were used to study the absorption behavior (of the solutions and coated layers) and crystallinity of the active layer, respectively. The results show that the existence of 1,8-diiodooctane reduced the open circuit voltage from 0.81 to 0.52 V and increased the short circuit current by about three folds; the fill factor (FF) and power conversion efficiency were increased from 36.0 to 54.1% and 0.47% to 1.54%, respectively. These changes can be attributed to the enhanced crystallinity of P3HT or the doping effect of 1,8-diiodooctane on P3HT chains. UV-visible analysis demonstrated that the addition of 1,8-diiodooctane to the solution did not change the absorption onset, whereas in the coated layers, the maximum absorption peak shifted to higher wavelengths. The XRD analyses demonstrated the enhancement of crystallinity of P3HT upon the introduction of 1,8-diiodooctane.


2012 ◽  
Vol 198-199 ◽  
pp. 64-67
Author(s):  
Jian Min Ye

To minimize interfacial power losses, thin layers of NiO, a p-type oxide semiconductor, are inserted between the active organic layer, poly(3-hexylthiophene) (P3HT) [6,6]-phenyl-C61 butyric acid methyl ester (PCBM), and the ITO (tin-doped indium oxide) anode of bulk-heterojunction ITO/P3HT:PCBM/Al solar cells. The interfacial NiO layer is deposited by radio frequency (RF) magnetron sputtering deposition directly onto cleaned ITO, and the active layer is subsequently deposited by spin-coating. Insertion of the NiO layer affords cell power conversion efficiencies as high as 2.5% and enhances the fill factor to 56% and the open-circuit voltage (Voc) to 605 mV versus ones without NiO buffering layer control device. The value of such hole-transporting/electron-blocking interfacial layers is clearly demonstrated and should be applicable to other organic photovoltaics.


Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1064 ◽  
Author(s):  
Tomasz Jarosz ◽  
Karolina Gebka ◽  
Kinga Kepska ◽  
Mieczyslaw Lapkowski ◽  
Przemyslaw Ledwon ◽  
...  

A new type of polysiloxane copolymers, with conjugated–regioregular poly(3-hexylthiophene) (P3HT) and non-conjugated-poly(ethylene glycol) (PEG)-grafts have been synthesised, and their properties have been studied alongside those of the parent conjugated polymer (P3HT). Spectroelectrochemical and conductometric analyses revealed an early rise of the conductance of the polymers. Once spectral changes begin taking place, the conductance is stable, implying a loss of mobility of charge carriers, even though standard doping/dedoping patterns are observed. Prototype bulk heterojunction solar cells have been fabricated, based on P3HT/[6,6]-Phenyl-C61-butyric acid methyl ester (PCBM), as well as by substituting P3HT for each of the copolymers. The prototype solar cells achieved PCEs of up to 2.11%. This is one of the highest reported power conversion efficiency (PCE) for devices based on P3HT with low average molecular weight Mn = 12 kDa. Strong correlation between the structure of the copolymer and its photovoltaic performance was found. Elongation of PEG copolymer chain and the use of methyl group instead of terminal hydroxyl groups significantly improved photovoltaic performance.


Sign in / Sign up

Export Citation Format

Share Document