scholarly journals Investigating the Interaction Effects between Reservoir Deformation and Hydrate Dissociation in Hydrate-Bearing Sediment by Depressurization Method

Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 548
Author(s):  
Lijia Li ◽  
Xiaosen Li ◽  
Yi Wang ◽  
Chaozhong Qin ◽  
Bo Li ◽  
...  

Natural gas hydrate (NGH) has been widely focused on having great potential for alternative energy. Numerous studies on gas production from hydrate-bearing sediments have been conducted in both laboratory and field. Since the strength of hydrate-bearing sediments depends on the saturation of NGH, the decomposition of NGH may cause the failure of sediments, then leading to reservoir deformation and other geological hazards. Plenty of research has shown that the reservoir deformation caused by hydrate decomposition is considerable. In order to investigate this, the influence of sediment deformation on the production of NGH, a fully coupled thermo-hydro-chemo-mechanical (THMC) model is established in this study. The interaction effects between reservoir deformation and hydrate dissociation are discussed by comparing the simulation results of the mechanical coupling and uncoupled models on the laboratory scale. Results show that obvious differences in behaviors between gas and water production are observed among these two models. Compared to the mechanical uncoupled model, the mechanical coupling model shows a significant compaction process when given a load equal to the initial pore pressure, which leads to a remarkable decrease of effective porosity and reservoir permeability, then delays the pore pressure drop rate and reduces the maximum gas production rate. It takes a longer time for gas production in the mechanical coupling model. Since the reservoir temperature is impacted by the comprehensive effects of the heat transfer from the boundary and the heat consumption of hydrate decomposition, the reduced maximum gas production rate and extended gas production process for the mechanical coupling model lead to the minimum reservoir temperature in the mechanical coupling model larger than that of the mechanical uncoupled model. The reduction of the effective porosity for the mechanical coupling model causes a larger cumulative water production. The results of this paper indicate that the reservoir deformation in the gas production process should be taken into account by laboratory and numerical methods to accurately predict the behaviors of gas production on the field scale.

Author(s):  
Ah-Ram Kim ◽  
Gye-Chun Cho ◽  
Joo-Yong Lee ◽  
Se-Joon Kim

Methane hydrate has been received large attention as a new energy source instead of oil and fossil fuel. However, there is high potential for geomechanical stability problems such as marine landslides, seafloor subsidence, and large volume contraction in the hydrate-bearing sediment during gas production induced by depressurization. In this study, a thermal-hydraulic-mechanical coupled numerical analysis is conducted to simulate methane gas production from the hydrate deposits in the Ulleung basin, East Sea, Korea. The field-scale axisymmetric model incorporates the physical processes of hydrate dissociation, pore fluid flow, thermal changes (i.e., latent heat, conduction and advection), and geomechanical behaviors of the hydrate-bearing sediment. During depressurization, deformation of sediments around the production well is generated by the effective stress transformed from the pore pressure difference in the depressurized region. This tendency becomes more pronounced due to the stiffness decrease of hydrate-bearing sediments which is caused by hydrate dissociation.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4227 ◽  
Author(s):  
Yi Wang ◽  
Lei Zhan ◽  
Jing-Chun Feng ◽  
Xiao-Sen Li

Natural gas hydrate could be regarded as an alternative energy source in the future. Therefore, the investigation of the gas production from hydrate reservoirs is attracting extensive attention. In this work, a novel set-up was built to investigate sand production and sediment deformation during hydrate dissociation by heat stimulation. The influence of the particle sizes on the hydrate dissociation and sediment deformation was first investigated experimentally. The experimental results indicated that the rate of hydrate decomposition by heat stimulation was in proportion to the particle size of the sediment. The heat transfer rate and the energy efficiency decreased with the decrease of the particle size of the sediment. This was because higher permeability might lead to a larger sweep area of the fluid flow, which was beneficial for the supply of heat for hydrate dissociation. The sand production was found during hydrate dissociation by heat stimulation. The particle migration was due to the hydrodynamics of the water injection. The sand sediment expanded under the drive force from water injection and hydrate dissociation. Additionally, the smaller permeability led to the larger pressure difference leading to the larger sediment deformation. Because the sediment became loose after hydrate dissociation, small particle migration due to the hydrodynamics of the water injection could happen during the experiments. However, the sand production in the sediment with the larger particle size was more difficult, because the larger particles were harder to move due to the hydrodynamics, and the larger particles were harder to move across the holes on the production well with a diameter of 1 mm. Therefore, the sediment deformation during hydrate dissociation by heat stimulation should not be ignored.


2019 ◽  
Vol 118 ◽  
pp. 01008
Author(s):  
Yingrui Ma ◽  
Shuxia Li ◽  
Didi Wu

Natural gas hydrate(NGH) is a clean resource with huge reserves. The depressurization method is an economical and effective exploitation method. In the process of depressurization, reservoir absolute permeability has an important influence on production results. Based on the data of Shenhu hydrate reservoirs, this paper established a depressurization production numerical simulation model. Then, the production performances such as pressure, temperature, gas production rate, cumulative gas production, and hydrate dissociation effect are all studied under different permeability conditions.study the change of reservoir pressure, gas production rate, cumulative gas production, reservoir temperature change and hydrate dissociation effect under different permeability conditions. Results show that higher permeability is conducive to the depressurization of hydrate reservoirs.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xuke Ruan ◽  
Chun-Gang Xu ◽  
Ke-Feng Yan ◽  
Xiao-Sen Li

The hydrate decomposition kinetics is a key factor for the gas production from hydrate-saturated porous media. Meanwhile, it is also related to other factors. Among them, the permeability and hydrate dissociation surface area on hydrate dissociation kinetics have been studied experimentally and numerically in this work. First, the permeability to water was experimentally determined at different hydrate saturations (0%, 10%, 17%, 21%, 34%, 40.5%, and 48.75%) in hydrate-bearing porous media. By the comparison of permeability results from the experimental measurements and theoretical calculations with the empirical permeability models, it was found that, for the lower hydrate saturations (less than 40%), the experimental results of water permeability are closer to the predicted values of the grain-coating permeability model, whereas, for the hydrate saturation above 40%, the tendencies of hydrate accumulation in porous media are quite consistent with the pore-filling hydrate habits. A developed two-dimensional core-scale numerical code, which incorporates the models for permeability and hydrate dissociation surface area along with the hydrate accumulation habits in porous media, was used to investigate the kinetics of hydrate dissociation by depressurization, and a “shrinking-core” hydrate dissociation driven by the radial heat transfer was found in the numerical simulations of hydrate dissociation induced by depressurization in core-scale porous media. The numerical results indicate that the gas production from hydrates in porous media has a strong dependence on the permeability and hydrate dissociation surface area. Meanwhile, the simulation shows that the controlling factor for the dissociation kinetics of hydrate switches from permeability to hydrate dissociation surface area depending on the hydrate saturation and hydrate accumulation habits in porous media.


2013 ◽  
Vol 05 (04) ◽  
pp. 1350040 ◽  
Author(s):  
WENBIN ZHOU ◽  
FENG HAO ◽  
DAINING FANG

Poor cyclic performance of lithium-ion batteries is calling for efforts to study its capacity attenuation mechanism. The internal stress field produced in the lithium-ion battery during its charging and discharging process is a major factor for its capacity attenuation, research on it appears especially important. We established an electrochemical –mechanical coupling model with the consideration of the influence of elastic stiffening on diffusion for graphite anode materials. The results show that the inner stress field strongly depends on the lithium-ion concentration field, greater concentration gradients lead to greater stresses. The evolution of the stress field is similar to that of the concentration gradient but lags behind it, which shows hysteresis phenomenon. Elastic stiffening can lower the concentration gradient and increase elastic modulus, which are two major factors influencing the inner stress field. We conclude that the latter is more dominant compared to the former, and elastic stiffening acts to increasing the internal stress.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 91
Author(s):  
Yixiao Xie ◽  
Jinze Bao ◽  
Wenqi Li ◽  
Zhiqiang Sun ◽  
Run Gao ◽  
...  

Alfalfa sometimes cannot be harvested in time due to the rainy season. To improve the fermentation quality, protein quality and digestibility of alfalfa silage harvested late, Lactobacillus plantarum (LP) and molasses were applied in an actual production process in this study. Alfalfa harvested at the full bloom stage was ensiled with (1) distilled water (control), (2) 1 × 106 colony-forming units LP/g fresh matter, (3) 15 g molasses/kg fresh matter (M) or (4) LP + M (LPM) for 55 days. Alfalfa ensiled with LP and/or molasses showed significantly lower pH and ammonia nitrogen contents than the control silage (p < 0.05). All additive treatments decreased nonprotein nitrogen contents and preserved more true protein (p < 0.05). However, molasses increased the acid detergent insoluble nitrogen content in the protein fractions (p < 0.05). The LP significantly improved the maximal cumulative gas production and the maximum gas production rate (p < 0.05) in the in vitro trial. Finally, both LP and molasses improved the neutral detergent fiber digestibility of the alfalfa silage (p < 0.05). The LP and molasses improved fermentation quality and digestibility and preserved more true protein in baled alfalfa silage harvested late in an actual production process. The LP utilized the excessive molasses and partially ameliorated its negative effects of causing higher acid detergent insoluble nitrogen content.


2021 ◽  
Author(s):  
Ermeng Zhao ◽  
Jian Hou ◽  
Yunkai Ji ◽  
Lu Liu ◽  
Yongge Liu ◽  
...  

Abstract Natural gas hydrate is widely distributed in the permafrost and marine deposits, and is regarded as an energy resource with great potential. The low-frequency electric heating assisted depressurization (LF-EHAD) has been proven to be an efficient method for exploiting hydrate sediments, which involves complex multi-physics processes, i.e. current conduction, multiphase flow, chemical reaction and heat transfer. The physical properties vary greatly in different hydrate sediments, which may profoundly affect the hydrate decomposition in the LF-EHAD process. In order to evaluate the influence of hydrate-bearing sediment properties on the gas production behavior and energy utilization efficiency of the LF-EHAD method, a geological model was first established based on the data of hydrate sediments in the Shenhu Area. Then, the influence of permeability, porosity, thermal conductivity, specific heat capacity, hydrate saturation and hydrate-bearing layer (HBL) thickness on gas production behavior is comprehensively analyzed by numerical simulation method. Finally, the energy efficiency ratio under different sediment properties is compared. Results indicate that higher gas production is obtained in the high-permeability hydrate sediments during depressurization. However, after the electric heating is implemented, the gas production first increases and then tends to be insensitive as the permeability decreases. With the increasing of porosity, the gas production during depressurization decreases due to the low effective permeability; while in the electric heating stage, this effect is reversed. High thermal conductivity is beneficial to enhance the heat conduction, thus promoting the hydrate decomposition. During depressurization, the gas production is enhanced with the increase of specific heat capacity. However, more heat is consumed to increase the reservoir temperature during electric heating, thereby reducing the gas production. High hydrate saturation is not conducive to depressurization because of the low effective permeability. After electric heating, the gas production increases significantly. High HBL thickness results in a higher gas production during depressurization, while in the electric heating stage, the gas production first increases and then remains unchanged with the increase of thickness, due to the limited heat supply. The comparison results of energy efficiency suggest that electric heating is more advantageous for hydrate sediments with low permeability, high porosity, high thermal conductivity, low specific heat capacity, high hydrate saturation and high HBL thickness. The findings in this work can provide a useful reference for evaluating the application of the LF-EHAD method in gas hydrate sediments.


Sign in / Sign up

Export Citation Format

Share Document