scholarly journals Integration and Optimal Control of MicroCSP with Building HVAC Systems: Review and Future Directions

Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 730
Author(s):  
Mohamed Toub ◽  
Chethan R. Reddy ◽  
Rush D. Robinett ◽  
Mahdi Shahbakhti

Heating, ventilation, and air-conditioning (HVAC) systems are omnipresent in modern buildings and are responsible for a considerable share of consumed energy and the electricity bill in buildings. On the other hand, solar energy is abundant and could be used to support the building HVAC system through cogeneration of electricity and heat. Micro-scale concentrated solar power (MicroCSP) is a propitious solution for such applications that can be integrated into the building HVAC system to optimally provide both electricity and heat, on-demand via application of optimal control techniques. The use of thermal energy storage (TES) in MicroCSP adds dispatching capabilities to the MicroCSP energy production that will assist in optimal energy management in buildings. This work presents a review of the existing contributions on the combination of MicroCSP and HVAC systems in buildings and how it compares to other thermal-assisted HVAC applications. Different topologies and architectures for the integration of MicroCSP and building HVAC systems are proposed, and the components of standard MicroCSP systems with their control-oriented models are explained. Furthermore, this paper details the different control strategies to optimally manage the energy flow, both electrical and thermal, from the solar field to the building HVAC system to minimize energy consumption and/or operational cost.

Author(s):  
A.F. Emery ◽  
G. Banken ◽  
C.J. Kippenhan ◽  
D.R. Heerwagen ◽  
B. Dorri

Author(s):  
Jairos Kahuru ◽  
Livingstone S. Luboobi ◽  
Yaw Nkansah-Gyekye

Tungiasis is a permanent penetration of female sand flea“Tunga penetrans”into the epidermis of its host. It affects human beings and domestic and sylvatic animals. In this paper, we apply optimal control techniques to a Tungiasis controlled mathematical model to determine the optimal control strategy in order to minimize the number of infested humans, infested animals, and sand flea populations. In an attempt to reduce Tungiasis infestation in human population, the control strategies based on personal protection, personal treatment, educational campaign, environmental sanitation, and insecticidal treatments on the affected parts as well as on animal fur are considered. We prove the existence of optimal control problem, determine the necessary conditions for optimality, and then perform numerical simulations. The numerical results showed that the control strategy comprises all five control measures and that which involves the three control measures of insecticide control, insecticidal dusting on animal furs, and environmental hygiene has the significant impact on Tungiasis transmission. Therefore, fighting against Tungiasis infestation in endemic settings, multidimensional control process should be employed in order to achieve the maximum benefits.


Author(s):  
S. Bharath Sai ◽  
H. Srinaathh ◽  
S Sanjunath

Heating Ventilating and Air Conditioning (HVAC) systems are the core energy-absorbing equipment in buildings. Building HVAC system with effective control technique can greatly reduce energy consumption. The high demand for HVAC system Placing in buildings, using an effective control technique to decrease the energy absorbing of the equipment while meeting the thermal comfort demands in buildings are the most important goals of control designers. The different control methods for HVAC systems. This paper defines control techniques used in HVAC systems, MATLAB/simulation design and implementation of controller’s technique with the transfer function for the HVAC system. Keywords-HVAC, PID controller, MPC Controller, Adaptive Controller, Fuzzy Controller.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 530 ◽  
Author(s):  
Jing Zhao ◽  
Yu Shan

The energy consumption of air-conditioning systems is a major part of energy consumption in buildings. Optimal control strategies have been increasingly developed in building heating, ventilation, and air-conditioning (HVAC) systems. In this paper, a load forecast fuzzy (LFF) control strategy was proposed. The predictive load based on the SVM method was used as the input parameter of the fuzzy controller to perform feedforward fuzzy control on the HVAC system. This control method was considered as an effective way to reduce energy consumption while ensuring indoor comfort, which can solve the problem of hysteresis and inaccuracy in building HVAC systems by controlling the HVAC system in advance. The case study was conducted on a ground source heat pump system in Tianjin University to validate the proposed control strategy. In addition, the advantages of the LFF control strategy were verified by comparing with two feedback control strategies, which are the supply water temperature (SWT) control strategy and the room temperature fuzzy (RTF) control strategy. Results show that the proposed LFF control strategy is capable not only to ensure the minimum indoor temperature fluctuations but also decrease the total energy consumption.


Author(s):  
Hao-Cheng Zhu ◽  
Chen Ren ◽  
Shi-Jie Cao

Abstract Heating, ventilation and air conditioning (HVAC) systems are the most energy-consuming building implements for the improvement of indoor environmental quality (IEQ). We have developed the optimal control strategies for HVAC system to respectively achieve the optimal selections of ventilation rate and supplied air temperature with consideration of energy conservation, through the fast prediction methods by using low-dimensional linear ventilation model (LLVM) based artificial neural network (ANN) and low-dimensional linear temperature model (LLTM) based contribution ratio of indoor climate (CRI(T)). To be continued for integrated control of multi-parameters, we further developed the fast prediction model for indoor humidity by using low-dimensional linear humidity model (LLHM) and contribution ratio of indoor humidity (CRI(H)), and thermal sensation index (TS) for assessment. CFD was used to construct the prediction database for CO2, temperature and humidity. Low-dimensional linear models (LLM), including LLVM, LLTM and LLHM, were adopted to expand database for the sake of data storage reduction. Then, coupling with ANN, CRI(T) and CRI(H), the distributions of indoor CO2 concentration, temperature, and humidity were rapidly predicted on the basis of LLVM-based ANN, LLTM-based CRI(T) and LLHM-based CRI(H), respectively. Finally, according to the self-defined indices (i.e., EV, ET, EH), the optimal balancing between IEQ (indicated by CO2 concentration, PMV and TS) and energy consumption (indicated by ventilation rate, supplied air temperature and humidity) were synthetically evaluated. The total HVAC energy consumption could be reduced by 35% on the strength of current control strategies. This work can further contribute to development of the intelligent online control for HVAC systems.


Author(s):  
A. R. Mehrabian ◽  
K. Khorasani

This paper is concerned with design of distributed optimal synchronization control strategies for a class of networked nonlinear heterogeneous multi-agent (HMA) systems whose dynamics are governed by Euler–Lagrange (EL) equations. We employ optimal control techniques to design synchronization (consensus seeking) and set-point regulation controllers for HMA systems through optimization of individual cost functions. We introduce an analytical solution to the optimization problem and show that the developed optimal control laws can manage switchings in the communication network topology. Additionally, we propose two control strategies (namely, adaptive and robust) to modify and generalize the developed optimal control laws in presence of parametric uncertainties in the HMA systems. Simulation results for the attitude synchronization control of a network of eight spacecraft are presented to demonstrate the effectiveness and capabilities of our proposed control algorithms.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 313
Author(s):  
Mieczysław Porowski ◽  
Monika Jakubiak

This article presents approximating relations defining energy-optimal structures of the HVAC (Heating, Ventilation, Air Conditioning) system for cleanrooms as a function of key constant parameters and energy-optimal control algorithms for various options of heat recovery and external climates. The annual unit primary energy demand of the HVAC system for thermodynamic air treatment was adopted as the objective function. Research was performed for wide representative variability ranges of key constant parameters: cleanliness class—Cs (ISO5÷ISO8), unit cooling loads —q˙j (100 ÷ 500) W/m2 and percentage of outdoor air—αo (5 ÷ 100)%. HVAC systems are described with vectors x¯ with coordinates defined by constant parameters and decision variables, and the results are presented in the form of approximating functions illustrating zones of energy-optimal structures of the HVAC system x¯* = f (Cs, q˙j, αo). In the optimization procedure, the type of heat recovery as an element of optimal structures of the HVAC system and algorithms of energy-optimal control were defined based on an objective function and simulation models. It was proven that using heat recovery is profitable only for HVAC systems without recirculation and with internal recirculation (savings of 5 ÷ 66%, depending on the type of heat recovery and the climate), while it is not profitable (or generates losses) for HVAC systems with external recirculation or external and internal recirculation at the same time.


1987 ◽  
Author(s):  
ZORAN MARTINOVIC ◽  
RAPHAEL HAFTKA ◽  
WILLIAM HALLAUER, JR. ◽  
GEORGE SCHAMEL, II

Author(s):  
Muhammad Hamza Shahbaz ◽  
Arslan Ahmed Amin

: Because of the consistently expanding energy request, the introduction of a decentralized micro-grid based on energy resources will soon be the most exciting development in the power system. Micro-grids, which are mainly based on inverters, are becoming more popular as they can handle different forms of renewable energy effectively. However, one of the most challenging areas of research is their control. In the last few years, many control strategies have been developed. In this review, different control methods have been discussed that apply to the micro-grid system. Furthermore, the comparative analysis of classical and modern control strategies is also considered. This survey guides the new researchers about all available control strategies and room for improvement towards the optimal solution of the micro-grid control techniques. It also identifies several research gaps and future trends therein as well as provides a solution to manage problems in MGs. The strategies are then compared based on their applicability to different control requirements.


Sign in / Sign up

Export Citation Format

Share Document