scholarly journals An Efficient Hybrid Algorithm for Energy Expenditure Estimation for Electric Vehicles in Urban Service Enterprises

Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 2004
Author(s):  
Mariusz Izdebski ◽  
Marianna Jacyna

The article deals with the decision problems of estimating the energy expenditure of low-emission fleets in urban service companies due to environmental safety. One of the most important problems of today’s transport policy of many city authorities is the ecological safety of its inhabitants. The basic measures are aimed at banning high-emission vehicles from city centers and promoting the introduction of zero-emission vehicles, such as electric or hybrid cars. The authors proposed an original approach to the decision model, in which the energy expenditure from the use of electric vehicles was defined as a criterion function. The boundary conditions took into account limitations typical of an electric vehicle, e.g., maximum range or battery charging time. To solve the problem, the authors proposed an efficient hybrid algorithm based on ant colony algorithm and genetic algorithm. The verification was made for the example of a utility company serving a medium-sized city in the eastern part of Poland.

Author(s):  
O. F. Vynakov ◽  
E. V. Savolova ◽  
A. I. Skrynnyk

This overview article shows the advantages of a modern electric car as compared with internal combustion cars by the example of the electric vehicles of Tesla Motors Company. It (в смысле- статья) describes the history of this firm, provides technical and tactical characteristics of three modifications of electric vehicles produced by Tesla Motors. Modern electric cars are not less powerful than cars with combustion engines both in speed and acceleration amount. They are reliable, economical and safe in operation. With every year the maximum range of an electric car is increasing and its battery charging time is decreasing.Solving the problem of environmental safety, the governments of most countries are trying to encourage people to switch to electric cars by creating subsidy programs, lending and abolition of taxation. Therefore, the advent of an electric vehicle in all major cities of the world is inevitable.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 2030
Author(s):  
Marianna Jacyna ◽  
Renata Żochowska ◽  
Aleksander Sobota ◽  
Mariusz Wasiak

In recent years, policymakers of urban agglomerations in various regions of the world have been striving to reduce environmental pollution from harmful exhaust and noise emissions. Restrictions on conventional vehicles entering the inner city are being introduced and the introduction of low-emission measures, including electric ones, is being promoted. This paper presents a method for scenario analysis applied to study the reduction of exhaust emissions by introducing electric vehicles in a selected city. The original scenario analyses relating to real problems faced by contemporary metropolitan areas are based on the VISUM tool (PTV Headquarters for Europe: PTV Planung Transport Verkehr AG, 76131 Karlsruhe, Germany). For the case study, the transport model of the city of Bielsko-Biala (Poland) was used to conduct experiments with different forms of participation of electric vehicles on the one hand and traffic restrictions for high emission vehicles on the other hand. Scenario analyses were conducted for various constraint options including inbound, outbound, and through traffic. Travel time for specific transport relations and the volume of harmful emissions were used as criteria for evaluating scenarios of limited accessibility to city zones for selected types of vehicles. The comparative analyses carried out showed that the introduction of electric vehicles in the inner city resulted in a significant reduction in the emission of harmful exhaust compounds and, consequently, in an increase in the area of clean air in the city. The case study and its results provide some valuable insights and may guide decision-makers in their actions to introduce both driving ban restrictions for high-emission vehicles and incentives for the use of electric vehicles for city residents.


2021 ◽  
Vol 2066 (1) ◽  
pp. 012079
Author(s):  
Yanbei Duan ◽  
Wenjie Lu

Abstract Scheduling is the daily work of the Ministry of Education in Colleges and universities. In the past ten years, the scale of our colleges and universities has expanded rapidly, but the teaching resources are relatively limited. Many schools are facing the problem of insufficient classroom resources and teachers resources. The current way of organizing courses is increasingly difficult to make full use of existing resources to solve the changing needs and inefficiencies, which need to be improved urgently. This paper applies the hybrid Genetic-Ant algorithm to the automatic course scheduling system in Colleges and universities, and uses the cross-function to design and build the automatic course scheduling system in Colleges and universities. And select a college’s course scheduling system from this city for research, and use the Genetic-Ant hybrid algorithm to improve the original system to form a new system, called the original system A, and called the improved new system B, to compare the operation time and system suitability of the two systems. The results show that the fitness of system B is better than that of system A. When the scheduling unit is 100, the fitness of system A is 181, and system B is 203. When the scheduling unit is 400, the fitness of system B is 14 higher than that of system A. When the scheduling unit is 800, the fitness of system B is 64 higher than that of system A. Thus, the hybrid algorithm of genetic ant colony can improve the rationality of the curriculum.


2011 ◽  
Vol 308-310 ◽  
pp. 217-223 ◽  
Author(s):  
Zhen Po Wang ◽  
Hai Bin Han ◽  
Lu Zeng

The short driving range and long charging time are two big problems for electric vehicles. A concept of battery pack automatic replacement is put forward in this paper to solve these problems, and a deep research on the key techniques is contained. This paper introduced the way of positioning and locking in replacement process, including the concrete structure of both replacing equipment and battery pack. For reliability problems of the connectors, two schemes are designed. Elastic jacks and coil are adopted to guarantee the reliability and automatically centering. On this basis, battery fast replacing system is designed, which controlled by PLC, driven by electro-hydraulic servo. This was proved to be a big success in practice.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 430 ◽  
Author(s):  
F. P. Brito ◽  
Jorge Martins ◽  
Francisco Lopes ◽  
Carlos Castro ◽  
Luís Martins ◽  
...  

A range extender (RE) is a device used in electric vehicles (EVs) to generate electricity on-board, enabling them to significantly reduce the number of required batteries and/or extend the vehicle driving range to allow occasional long trips. In the present work, an efficiency-oriented RE based on a small motorcycle engine modified to the efficient over-expanded cycle, was analyzed, tested and simulated in a driving cycle. The RE was developed to have two points of operation, ECO: 3000 rpm, very high efficiency with only 15 kW; and BOOST: 7000 rpm with 35 kW. While the ECO strategy was a straightforward development for the over-expansion concept (less trapped air and a much higher compression ratio) the BOOST strategy was more complicated to implement and involved the need for throttle operation. Initially the concepts were evaluated in an in-house model and AVL Boost® (AVL List Gmbh, Graz, Austria), and proved feasible. Then, a BMW K75 engine was altered and tested on a brake dynamometer. The running engine proved the initial concept, by improving the efficiency for the ECO condition in almost 40% in relation to the stock engine and getting well over the required BOOST power, getting to 35 kW, while keeping an efficiency similar to the stock engine at the wide open throttle (WOT). In order to protect the engine during BOOST, the mixture was enriched, while at ECO the mixture was leaned to further improve efficiency. The fixed operation configuration allows the reduction, not only of complexity and cost of the RE, but also the set point optimization for the engine and generator. When integrated as a RE into a typical European light duty vehicle, it provided a breakthrough consumption reduction relatively to existing plug-in hybrid electric vehicles (PHEVs) in the market in the charge sustaining mode. The very high efficiency of the power generation seems to compensate for the loss of efficiency due to the excess electricity production, which must be stored in the battery. The results indicate that indeed it is possible to have an efficient solution, in-line with the electric mobility sustainability paradigm, which can solve most of the shortcomings of current EVs, notably those associated with batteries (range, cost and charging time) in a sustainable way.


2018 ◽  
Vol 17 (06) ◽  
pp. 1865-1890 ◽  
Author(s):  
Jie Cao ◽  
He Han ◽  
Yi-Ping Jiang ◽  
Ya-Jing Wang

This paper describes the emergency rescue vehicle transportation network within the entire rescue period, and imitates rescue vehicle to select rescue route and to allocate emergency resource. The presented emergency rescue vehicle dispatch model seeks to minimize rescue time as the first objective function, minimize delay cost as the second objective function and maximize lifesaving utility as the last objective function in disaster response operations. To solve the proposed multiple objective model, a hybrid algorithm named nondominated sorting genetic algorithm (NSGA-II) with ant colony algorithm and a NSGA-II with random crossover and mutation, which can find better initial solution, are presented. In order to further prove the validity of the model and algorithm, a more complicated case is cited. Computational results are reported to illustrate the performance of the proposed model and algorithm. Statistical analysis confirms that the proposed random crossover and mutation operator outperforms the original crossover and mutation operator. The sensitivity analysis proves which parameter is more important for objective function values.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Zhixue Zhao ◽  
Xiamiao Li ◽  
Xiancheng Zhou

Electric vehicles (EVs) have been widely used in urban cold chain logistic distribution and transportation of fresh products. In this paper, an electric vehicle routing problem (EVRP) model under time-varying traffic conditions is designed for planning the itinerary for fresh products in the urban cold chain. The object of the EVRP model is to minimize the total cost of logistic distribution that includes economic cost and fresh value loss cost. To reflect the real situation, the EVRP model considers several influencing factors, including time-varying road network traffic, road type, client’s time-window requirement, freshness of fresh products, and en route queuing for charging. Furthermore, to address the EVRP, an improved adaptive ant colony algorithm is designed. Simulation test results show that the proposed method can allow EVs to effectively avoid traffic congestion during the distribution process, reduce the total distribution cost, and improve the performance of the cold chain logistic distribution process for fresh products.


2018 ◽  
Vol 9 (1) ◽  
pp. 14 ◽  
Author(s):  
Julia Krause ◽  
Stefan Ladwig ◽  
Lotte Saupp ◽  
Denis Horn ◽  
Alexander Schmidt ◽  
...  

Fast-charging infrastructure with charging time of 20–30 min can help minimizing current perceived limitations of electric vehicles, especially considering the unbalanced and incomprehensive distribution of charging options combined with a long perceived charging time. Positioned on optimal location from user and business perspective, the technology is assumed to help increasing the usage of an electric vehicle (EV). Considering the user perspectives, current and potential EV users were interviewed in two different surveys about optimal fast-charging locations depending on travel purposes and relevant location criteria. The obtained results show that customers prefer to rather charge at origins and destinations than during the trip. For longer distances, charging locations on axes with attractive points of interest are also considered as optimal. From the business model point of view, fast-charging stations at destinations are controversial. The expensive infrastructure and the therefore needed large number of charging sessions are in conflict with the comparatively time consuming stay.


2013 ◽  
Vol 385-386 ◽  
pp. 1159-1163
Author(s):  
Yong Tian ◽  
Bi Zhong Xia ◽  
Yue Sun ◽  
Zhi Hui Xu ◽  
Wei Sun

Electric vehicle has aroused peoples concern with soaring energy crisis and environmental degradation. However, it has not been widely used due to some drawbacks, such as the short driving range, long charging time, frequent charging requirements and high price. In order to solve these problems, the roadway-powered electric vehicles (RPEVs) based on an inductive power transfer (IPT) has been proposed. In the segmented RPEVs system, efficiency and annual cost are affected by the track distance, tracks interval, number of tracks and installed capacity of each track, etc. Aiming to such problem, the nonlinear programming (NLP) model for segmented tracks planning of RPEVs system is studied in this paper. Meanwhile, the relationship between the system efficiency and the number of loads is analyzed as a cogent argument to the application of segmented tracks.


2014 ◽  
Vol 8 (5) ◽  
pp. 698-704 ◽  
Author(s):  
Takuya Taguchi ◽  
◽  
Kei Matsumoto ◽  
Keita Imamura ◽  
Koichiro Goto ◽  
...  

Electric vehicles (EVs) have numerous inherent challenges, including running out of power frequently and taking a long time to charge. To make matters worse, current automotive navigation systems cannot provide proper route searches that include charging plans. One way to tackle these challenging problems is to propose several route plans and select one which meets the driver’s needs. In this paper, the following three evaluation criteria are proposed: shortening travel time by predicting charging queues, maintaining high residual capacity of the battery, and utilizing charging time. The proposed method is applied to Okinawa, Japan as a case study. The simulation results using this evaluation method in Okinawa demonstrate its potential utility and open the way for future work on relieving the stress of EV drivers.


Sign in / Sign up

Export Citation Format

Share Document