scholarly journals Possibilities for Reducing CO and TOC Emissions in Thermal Waste Treatment Plants: A Case Study

Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2901
Author(s):  
Janusz Bujak ◽  
Piotr Sitarz ◽  
Rafał Pasela

The technology of waste-management thermal processing may pose a threat to the natural environment through the emission of harmful substances, such as CO, NOx, SO2, HCl, HF, total organic carbon (TOC) and dust, as well as dioxins and furans. Due to the advantages of thermal waste treatment, including the small volume of solid residue produced and possible thermal energy recovery, thermal waste treatment is widely applied. Continuous research is necessary to develop methods for reducing the risk of harmful substances being produced and methods for the effective removal of pollutants resulting from flue gases. This paper presents an analysis of the results and conditions of the experimental redesign of a thermal industrial waste (polypropylene) treatment plant. The purpose of the redesign was to improve the quality of gasification and afterburning processes taking place in the combustion and afterburner chambers (through the installation of an additional section), thus resulting in a reduction in the concentrations of CO and total organic carbon (TOC) in flue gases. The research concerned a facility implementing the combustion process on an industrial scale. The experiment led to a reduction in the average concentrations of carbon monoxide from 16.58 mg/m3 to 3.23 mg/m3 and of volatile organic compounds from 2.20 mg/m3 to 0.99 mg/m3. At the same time, no deterioration was observed in any of the remaining technological parameters of the plant, such as waste combustion performance and the energy efficiency of the thermal energy recovery system.

2017 ◽  
Author(s):  
Xili Duan ◽  
Isa R. Haque ◽  
Aloysius Ducey

This paper presents feasibility study and concept design of a thermal energy recovery system with an adsorption heat pump integrated with a small sewage treatment plant in northern Newfoundland communities. Treated fluids from the sewage treatment systems are quite warm even in winter. For example measured fluids temperature is averaged at 17 °C when air temperature is at −10 °C in the town of Whitbourne. This provides an attractive heat source particularly for winter seasons. Four heat pump concepts, i.e., vapour compression, absorption, adsorption and chemical heat pumps, were reviewed and compared. The results show that the adsorption system best fits the sewage treatment plants with minimum power requirements. Thermal fluidic parameters of the key components were designed with fluid flow and heat transfer analysis. A brief economic and environmental analysis showed that the integrated energy recovery unit would lead to a net reduction of CO2 emission and feasible payback time.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6230
Author(s):  
Vincenzo Santucci ◽  
Silvia Fiore

The shredding of end-of-life refrigerators produces every year in Italy 15,000 tons of waste polyurethane foam (PUF), usually destined for energy recovery. This work presents the results of the investigation of the oil sorption potential of waste PUF according to ASTM F726–17 standard. Three oils (diesel fuel and two commercial motor oils) having different densities (respectively, 0.83, 0.87, and 0.88 kg/dm3) and viscosities (respectively, 3, 95, and 140 mm2/s at 40 °C) were considered. The waste PUF was sampled in an Italian e-waste treatment plant, and its characterization showed 16.5 wt% particles below 0.71 mm and 13 wt% impurities (paper, plastic, aluminum foil), mostly having dimensions (d) above 5 mm. Sieving at 0.071 mm was applied to the waste PUF to obtain a “coarse” (d > 0.71 mm) and a “fine” fraction (d < 0.71 mm). Second sieving at 5 mm allowed an “intermediate” fraction to be obtained, with dimensions between 0.71 and 5 mm. The oil sorption tests involved the three fractions of waste PUF, and their performances were compared with two commercial oil sorbents (sepiolite and OKO-PUR). The results of the tests showed that the “fine” PUF was able to retain 7.1–10.3 g oil/g, the “intermediate” PUF, 4.2–7.4 g oil/g, and the “coarse” PUF, 4.5–7.0 g oil/g, while sepiolite and OKO-PUR performed worse (respectively, 1.3–1.6 and 3.3–5.3 g oil/g). In conclusion, compared with the actual management of waste PUF (100 wt% sent to energy recovery), the amount destined directly to energy recovery could be limited to 13 wt% (i.e., the impurities). The remaining 87 wt% could be diverted to reuse for oil sorption, and afterward directed to energy recovery, considered as a secondary option.


2009 ◽  
Vol 6 (s1) ◽  
pp. S287-S303
Author(s):  
Waleed Manasreh ◽  
Atef S. Alzaydien ◽  
Malahmeh .M

Assessment of treated wastewater produced from Al-Lajoun collection tanks of the wastewater treatment plant in Karak province was carried out in term of physical properties, its major ionic composition, heavy metals and general organic content, for both wastewater influent and effluent. Sampling was done in two periods during (2005-2006) summer season and during winter season to detect the impact of climate on treated wastewater quality. Soil samples were collected from Al-Lajoun valley where the treated wastewater drained, to determine the heavy metal and total organic carbon concentrations at same time. The study showed that the treated wastewater was low in its heavy metals contents during both winter and summer seasons, which was attributed to high pH value enhancing their precipitations. Some of the major ions such as Cl-, Na+, HCO33-, Mg2+in addition to biological oxygen demand and chemical oxygen demand were higher than the recommended Jordanian guidelines for drained water in valleys. The treated wastewater contained some organic compounds of toxic type such as polycyclic aromatic hydrocarbons. Results showed that the soil was low in its heavy metal contents and total organic carbon with distance from the discharging pond, which attributed to the adsorption of heavy metals, total organic carbon and sedimentation of suspended particulates. From this study it was concluded that the treated wastewater must be used in situ for production of animal fodder and prohibit its contact with the surface and groundwater resources of the area specially Al-Mujeb dam where it is collected.


2004 ◽  
Vol 4 (4) ◽  
pp. 71-78 ◽  
Author(s):  
D.H. Metz ◽  
J. DeMarco ◽  
R. Pohlman ◽  
F.S. Cannon ◽  
B.C. Moore

The objective of this study was to compare the adsorption capabilities of the virgin carbon to the twelve and five times reactivated granular activated carbon (GAC). From a water treatment plant operator's perspective, there were very few practical differences in adsorption among the carbons tested for total organic carbon (TOC) and disinfection byproduct (DBP) precursors. However, some overall trends were observed. The GAC that was regenerated 5 times (R5) generally showed greater DBP precursor adsorption than the other GACs especially at the beginning of the runs. In some cases the carbon that was reactivated 12/13 times (R12 and R13) adsorbed slightly less DBP precursors than the other GACs especially in the latter part of the runs. The virgin (V) carbon performed better than the other GACs relative to DBP precursor removal in the latter part of the runs.


Author(s):  
Bijan Bina ◽  
MohammadMehdi Amin ◽  
Ensiyeh Taheri ◽  
Akbar Hassanzadeh ◽  
Mohammad Modarresi ◽  
...  

2016 ◽  
Vol 12 (5) ◽  
pp. 35
Author(s):  
Jan Spisak ◽  
Dusan Nascak ◽  
Daniela Cuchtova

Every year wastes are becoming a bigger problem which every individual or government must take note and solve it on the fly. If certain energy standards are fulfilled, the waste recovery in incineration plants or similar technological devices is possible. This measure should lead to more efficient waste combustion and its energy recovery. In our conditions, this can be achieved so that the heat generated during combustion will be also used to generate electricity respectively thermal energy. For a more efficient and optimal waste treatment was proposed a three-stage combustion system concept.


Sign in / Sign up

Export Citation Format

Share Document