scholarly journals Improvement of Biogas Quality and Quantity for Small-Scale Biogas-Electricity Generation Application in off-Grid Settings: A Field-Based Study

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3088
Author(s):  
Henry Wasajja ◽  
Saqr A. A. Al-Muraisy ◽  
Antonella L. Piaggio ◽  
Pamela Ceron-Chafla ◽  
Purushothaman Vellayani Aravind ◽  
...  

Small-scale electrical power generation (<100 kW) from biogas plants to provide off-grid electricity is of growing interest. Currently, gas engines are used to meet this demand. Alternatively, more efficient small-scale solid oxide fuel cells (SOFCs) can be used to enhance electricity generation from small-scale biogas plants. Most electricity generators require a constant gas supply and high gas quality in terms of absence of impurities like H2S. Therefore, to efficiently use the biogas from existing decentralized anaerobic digesters for electricity production, higher quality and stable biogas flow must be guaranteed. The installation of a biogas upgrading and buffer system could be considered; however, the cost implication could be high at a small scale as compared to locally available alternatives such as co-digestion and improved digester operation. Therefore, this study initially describes relevant literature related to feedstock pre-treatment, co-digestion and user operational practices of small-scale digesters, which theoretically could lead to major improvements of anaerobic digestion process efficiency. The theoretical preamble is then coupled to the results of a field study, which demonstrated that many locally available resources and user practices constitute frugal innovations with potential to improve biogas quality and digester performance in off-grid settings.

Author(s):  
Miroslav P. Petrov

High-speed alternators are believed to be well developed nowadays, following the improvement in performance and decrease of costs for electronic power converters and permanent magnet materials. Their compact design and their ability to vary the rotational speed in off-design conditions promise superior performance when compared to conventional generators. High-speed alternators are only available in limited sizes for small-scale applications, whereas improvements in efficiency and optimized part-load behavior are particularly important especially for small-scale electricity generation. Enhanced energy utilization for electricity production by small utility plants or by distributed units located at private homes or commercial buildings, based on thermodynamic cycles powered by natural gas or various renewable energy sources, is possible to be achieved through a wider application of grid-integrated high-speed technology. This study presents a critical review of previous research and demonstration work on high-speed electrical machines and a summary of the technical challenges limiting their performance and their expansion into larger sizes. Conclusions are drawn for finding appropriate solutions for practical high-speed electricity generation units and their readiness for a much wider deployment. Closer analysis is attempted on the thermal and mechanical integrity of high-speed alternators and the technical challenges that slow down their scale-up to MW-size units for utility applications. The necessary research and development work that needs to be done in the near future is outlined and discussed herein.


2019 ◽  
pp. 92-106
Author(s):  
Valter Silva ◽  
João Cardoso ◽  
Paulo Brito ◽  
Luís Tarelho ◽  
José Luz

Municipal solid waste provides an opportunity for electricity production. This strategy provides the rural communities a potential waste-to-energy opportunity to manage its costly residues problem, turning them into a valuable recycled asset. To address this issue, a techno-economic study of an integrated system comprising gasification of Acacia residues and Portuguese Municipal Solid Waste (PMSW) with an Internal Combustion Engine-Generator (ICEG) for electricity generation at small-scale (100 kW) was developed. Current studies only devote attention to biomass residues and do not explore MSW potential to eschew biomass supply shortage. Conventional systems are generally part of biomass supply chains, limiting flexibility and all year operation for their operators. Experimental data was gathered at a downdraft gasifier to provide a clear assessment of particle and tar concentration in the syngas and levers conditioning a satisfactory ICE operation. Once the potential of using Acacia residues and PMSW has been proven during gasification runs testing, and validation, a set of new conditions was also explored through a high-fidelity CFD model. We find that residues blends have the highest potential to generate high-quality syngas and smallest exposure to supply disruption. Despite both substrates showing potential at specific conditions, they also present individual drawbacks which will be best mitigated by executing a hybrid supply comprising the mix of substrates. An economic model coupling the financial indicators of net present value (NPV), internal rate of return (IRR) and the payback period (PBP) considering a project lifetime of 25 years was developed. Cost factors include expenses with electricity generation, initial investment, amortizations and operation and maintenance (containing fuels costs). Revenues were estimated from electricity generated and sales to the national grid. A sensitivity analysis based on the Monte Carlo method was used to measure the economic model performance and to determine the risk in investing in such venture. The risk appraisal yielded favorable investment projections, with an NPV reaching positive values, an IRR superior to the discount rate and PBP lower than the project life span. This work allowed to confirm the positive effect of the generation of energy from downdraft gasification plants on a small-scale. Regardless of the project’s feasibility, the economic performance depended to a large extent on the electricity prices which present considerable variability and are subject to political decisions.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3097 ◽  
Author(s):  
J. R. Copa ◽  
C. E. Tuna ◽  
J. L. Silveira ◽  
R. A. M. Boloy ◽  
P. Brito ◽  
...  

The focus of this study is to provide a comparative techno-economic analysis concerning the deployment of small-scale gasification systems in dealing with various fuels from two countries, Portugal and Brazil, for electricity generation in a 15 kWe downdraft gasifier. To quantify this, a mathematical model was implemented and validated against experimental runs gathered from the downdraft reactor. Further, a spreadsheet economic model was developed combining the net present value (NPV), internal rate of return (IRR) and the payback period (PBP) over the project’s lifetime set to 25 years. Cost factors included expenses related to electricity generation, initial investment, operation and maintenance and fuel costs. Revenues were estimated from the electricity sales to the grid. A Monte Carlo sensitivity analysis was used to measure the performance of the economic model and determine the investment risk. The analysis showed an electricity production between 11.6 to 15 kW, with a general system efficiency of approximately 13.5%. The viability of the projects was predicted for an NPV set between 18.99 to 31.65 k€, an IRR between 16.88 to 20.09% and a PBP between 8.67 to 12.61 years. The risk assessment yielded favorable investment projections with greater risk of investment loss in the NPV and the lowest for IRR. Despite the feasibility of the project, the economic performance proved to be highly reliant on the electricity sales prices subdue of energy market uncertainties. Also, regardless of the broad benefits delivered by these systems, their viability is still strikingly influenced by governmental decisions, subsidiary support and favorable electricity sales prices. Overall, this study highlights the empowering effect of small-scale gasification systems settled in decentralized communities for electric power generation.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1321 ◽  
Author(s):  
Kathrin Bienert ◽  
Britt Schumacher ◽  
Martín Rojas Arboleda ◽  
Eric Billig ◽  
Samiksha Shakya ◽  
...  

Innovative small-scale biogas plants, including upgrading solutions to affordable biomethane, are necessary to tap into the spatially distributed potentials of organic waste. This research identified and assessed novel small-scale technologies before market-entry maturity in the key process steps of the biomethane chain. We assessed technical, economic, and ecological indicators, and compared them to larger-scale references. The assessment included 7 pre-treatment, 13 digester, and 11 upgrading systems all at the small scale. We collected recently available data for Europe (2016–2018) for small-scale technologies (<200 m3; raw biogas per hour). In the literature we did not find such a comprehensive assessment of actual European small-scale innovative non-market-ready technologies for the production of biomethane. Several conclusions were drawn for each of the individual process steps in the biomethane chain, e.g., the economic indicator calculated for the upgrading technologies shows that the upgrading costs, for some of them, are already close to the larger-scale reference (about 1.5 €ct/kWh raw biogas). Furthermore, biomethane production is absolutely context-specific, which dramatically limits the traditional way to evaluate technologies. Hence, new ways of integration of the technologies plays a major role on their future R&D.


2018 ◽  
Vol 49 ◽  
pp. 00012 ◽  
Author(s):  
Daniel Chludziński ◽  
Michał Duda

This paper describes three operating biogas plants with a comparable electrical power of 600 kW. The plants are situated in Germany and were constructed between 2007 and 2013. They belong to one owner who has a farm with an area of ca. 1,200 ha, oriented towards plant production. The article presents technological solutions applied in biogas plants; an attempt was also made to determine their effect on the amount of electricity consumed in the process (operation of stirrers, substrate feeders, pumps, control systems, lighting, etc.). Despite similar electrical power, the biogas plants differ in terms of construction and technological solutions. The differences stem mainly from the number and capacity of digestion chambers, the method of biomass stirring and the method of substrate supply. The preliminary conclusions from observations of these facilities confirm the literature data concerning the consumption of electricity in the process compared to total electricity production. The paper also presents the capacity factor for each facility and the level of heat use from cogeneration.


Author(s):  
Miroslav P. Petrov ◽  
Jens Fridh ◽  
Ake Göransson ◽  
Torsten H. Fransson

Energy utilization from low-grade fuels of either fossil or renewable origin, or from medium-temperature heat sources such as solar, industrial waste heat, or small nuclear reactors, for small-scale power generation via steam cycles, can be reasonably enhanced by a simple technology shift. This study evaluates the technical feasibility of a compact power generation package comprising a steam turbine directly coupled to a high-speed alternator delivering around 8–12 MW of electrical power. Commercial or research-phase high-speed electrical generators at MW-scale are reviewed, and a basic thermodynamic design and flow-path analysis of a steam turbine able to drive such a generator is attempted. High-speed direct drives are winning new grounds due to their abilities to be speed-controlled and to avoid the gearbox otherwise typical for small system drivetrains. These two features may offer a reasonable advantage to conventional drives in terms of higher reliability and better economy. High-speed alternators with related power electronics are nowadays becoming increasingly available for the MW-size market. A generic 8 to 12 MW synchronous alternator running respectively at 15,000 to 10,000 rpm, have been used as a reference for evaluating the fundamental design of a directly coupled steam turbine prime mover. The moderate steam parameter concept suits well for converting mid-temperature thermal energy into electrical power with the help of low-tech steam cycles, allowing for distributed electricity production at reasonable costs and efficiency. Steam superheat temperatures below 350°C (660°F) at pressures of maximum 20 bar would keep the steam volumetric flow sufficiently high in order to restrain the turbine losses typical for small-scale turbines, while helping also with simpler certification and safety procedures and using primarily established technology and standard components. The proposed steam turbines designs and their characteristics thereof have been evaluated by computer simulations using the in-house code ProSteam and its sub-procedures AXIAL and VaxCalc, by courtesy of Siemens Industrial Turbomachinery and its steam turbine division located in Finspong, Sweden. The first results from this study show that high-speed steam turbines of the proposed size and type are possible to design and manufacture based on conventional components, and can be expected to deliver a very satisfactory performance at variable power output.


2008 ◽  
Vol 59 (5) ◽  
Author(s):  
Mirela Dulama ◽  
Nicoleta Deneanu ◽  
Cristian Dulama ◽  
Margarit Pavelescu

The paper presents the experimental tests concerning the treatment by membrane techniques of radioactive aqueous waste. Solutions, which have been treated by using the bench-scale installation, were radioactive simulated secondary wastes from the decontamination process with modified POD. Generally, an increasing of the retention is observed for most of the contaminants in the reverse osmosis experiments with pre-treatment steps. The main reason for taking a chemical treatment approach was to selectively remove soluble contaminants from the waste. In the optimization part of the precipitation step, several precipitation processes were compared. Based on this comparison, mixed [Fe(CN)6]4-/Al3+/Fe2+ was selected as a precipitation process applicable for precipitation of radionuclides and flocculation of suspended solid. Increased efficiencies for cesium radionuclides removal were obtained in natural zeolite adsorption pre-treatment stages and this was due to the fact that volcanic tuff used has a special affinity for this element. Usually, the addition of powdered active charcoal serves as an advanced purifying method used to remove organic compounds and residual radionuclides; thus by analyzing the experimental data (for POD wastes) one can observe a decreasing of about 50% for cobalt isotopes subsequently to the active charcoal adsorption.. The semipermeable membranes were used, which were prepared by the researchers from the Research Center for Macromolecular Materials and Membranes, Bucharest. The process efficiency was monitored by gamma spectrometry.


2004 ◽  
Vol 4 (5-6) ◽  
pp. 199-206
Author(s):  
M. Ribau Teixeira ◽  
H. Lucas ◽  
M.J. Rosa

A rapid small-scale evaluation of ultrafiltration (UF) performance with and without physical–chemical pre-treatment was performed to up-grade the conventional treatment used for drinking water production in Alcantarilha's water treatment works, Algarve, Portugal. Direct UF and pre-ozonation/coagulation/flocculation/sedimentation/UF (O/C/F/S/UF) were evaluated using polysulphone membranes of different apparent molecular weight cut-off (MWCO) (15–47 kDa). The results indicated that (i) UF is an effective barrier against microorganisms, including virus larger than 80 nm; (ii) for surface waters with low to moderate SUVA values, direct UF performance is equivalent or better than the conventional treatment in terms of residual turbidity, while UV254 nm and TOC residuals require the use of O/C/F/S/UF; (iii) the permeate quality improves with the membrane apparent MWCO decrease, especially for the direct UF, although the conventional treatment performance is never reached using UF; (iv) membrane fouling and adsorption phenomena are more severe in direct UF than in O/C/F/S/UF sequence (pre-ozonation decreases the membrane foulants by decreasing their hydrophobicity) and these phenomena increase with the membrane hydraulic permeability and, particularly, with the membrane apparent MWCO.


2021 ◽  
Vol 9 (7) ◽  
pp. 1457
Author(s):  
Julia Hassa ◽  
Johanna Klang ◽  
Dirk Benndorf ◽  
Marcel Pohl ◽  
Benedikt Hülsemann ◽  
...  

There are almost 9500 biogas plants in Germany, which are predominantly operated with energy crops and residues from livestock husbandry over the last two decades. In the future, biogas plants must be enabled to use a much broader range of input materials in a flexible and demand-oriented manner. Hence, the microbial communities will be exposed to frequently varying process conditions, while an overall stable process must be ensured. To accompany this transition, there is the need to better understand how biogas microbiomes respond to management measures and how these responses affect the process efficiency. Therefore, 67 microbiomes originating from 49 agricultural, full-scale biogas plants were taxonomically investigated by 16S rRNA gene amplicon sequencing. These microbiomes were separated into three distinct clusters and one group of outliers, which are characterized by a specific distribution of 253 indicative taxa and their relative abundances. These indicative taxa seem to be adapted to specific process conditions which result from a different biogas plant operation. Based on these results, it seems to be possible to deduce/assess the general process condition of a biogas digester based solely on the microbiome structure, in particular on the distribution of specific indicative taxa, and without knowing the corresponding operational and chemical process parameters. Perspectively, this could allow the development of detection systems and advanced process models considering the microbial diversity.


Author(s):  
Segen F. Estefen ◽  
Paulo Roberto da Costa ◽  
Eliab Ricarte ◽  
Marcelo M. Pinheiro

Wave energy is a renewable and non-polluting source and its use is being studied in different countries. The paper presents an overview on the harnessing of energy from waves and the activities associated with setting up a plant for extracting energy from waves in Port of Pecem, on the coast of Ceara State, Brazil. The technology employed is based on storing water under pressure in a hyperbaric chamber, from which a controlled jet of water drives a standard turbine. The wave resource at the proposed location is presented in terms of statistics data obtained from previous monitoring. The device components are described and small scale model tested under regular waves representatives of the installation region. Based on the experimental results values of prescribed pressures are identified in order to optimize the power generation.


Sign in / Sign up

Export Citation Format

Share Document