scholarly journals Development of Online Adaptive Traction Control for Electric Robotic Tractors

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3394
Author(s):  
Idris Idris Sunusi ◽  
Jun Zhou ◽  
Chenyang Sun ◽  
Zhenzhen Wang ◽  
Jianlei Zhao ◽  
...  

Estimation and control of wheel slip is a critical consideration in preventing loss of traction, minimizing power consumptions, and reducing soil disturbance. An approach to wheel slip estimation and control, which is robust to sensor noises and modeling imperfection, has been investigated in this study. The proposed method uses a simplified form of wheels longitudinal dynamic and the measurement of wheel and vehicle speeds to estimate and control the optimum slip. The longitudinal wheel forces were estimated using a robust sliding mode observer. A straightforward and simple interpolation method, which involves the use of Burckhardt tire model, instantaneous values of wheel slip, and the estimate of longitudinal force, was used to determine the optimum slip ratio that guarantees maximum friction coefficient between the wheel and the road surface. An integral sliding mode control strategy was also developed to force the wheel slip to track the desired optimum value. The algorithm was tested in Matlab/Simulink environment and later implemented on an autonomous electric vehicle test platform developed by the Nanjing agricultural university. Results from simulation and field tests on surfaces with different friction coefficients (μ) have proved that the algorithm can detect an abrupt change in terrain friction coefficient; it can also estimate and track the optimum slip. More so, the result has shown that the algorithm is robust to bounded variations on the weight on the wheels and rolling resistance. During simulation and field test, the system reduced the slip from non-optimal values of about 0.8 to optimal values of less than 0.2. The algorithm achieved a reduction in slip ratio by reducing the torque delivery to the wheel, which invariably leads to a reduction in wheel velocity.

Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2501 ◽  
Author(s):  
Jinhong Sun ◽  
Xiangdang Xue ◽  
Ka Wai Eric Cheng

With the development of in-wheel technology (IWT), the design of the electric vehicles (EV) is getting much improved. The anti-lock braking system (ABS), which is a safety benchmark for automotive braking, is particularly important. Installing the braking motor at each fixed position of the wheel improves the intelligent control of each wheel. The nonlinear ABS with robustness performance is highly needed during the vehicle’s braking. The anti-lock braking controller (CAB) designed in this paper considered the well-known adhesion force, the resistance force from air and the wheel rolling friction force, which bring the vehicle model closer to the real situation. A sliding mode wheel slip ratio controller (SMWSC) is proposed to yield anti-lock control of wheels with an adaptive sliding surface. The vehicle dynamics model is established and simulated with consideration of different initial braking velocities, different vehicle masses and different road conditions. By comparing the braking effects with various CAB parameters, including stop distance, braking torque and wheel slip ratio, the SMWSC proposed in this paper has superior fast convergence and stability characteristics. Moreover, this SMWSC also has an added road-detection module, which makes the proposed braking controller more intelligent. In addition, the important brain of this proposed ABS controller is the control algorithm, which can be used in all vehicles’ ABS controller design.


2018 ◽  
Vol 23 (1) ◽  
pp. 17-28 ◽  
Author(s):  
Suneel Kumar Kommuri ◽  
Sang Bin Lee ◽  
Kalyana Chakravarthy Veluvolu

2013 ◽  
Vol 347-350 ◽  
pp. 753-757
Author(s):  
Li Zhou ◽  
Lu Xiong ◽  
Zhuo Ping Yu

This paper proposes a wheel slip control strategy for 4WD Electrical Vehicle with In-wheel Motors. In the first part of this paper, a brief introduction of sliding mode control for acceleration slip regulation is given. Consider that its control effect varies with road conditions, another algorithm which can automatically adapt to different roads is designed. This method takes advantage of the peculiarity of the longitudinal static tire force curve and regulates wheel slip ratio to the detected optimal value, aiming to maximize the traction force while preserving sufficient lateral tire force. Simulation results show that the slip rate can be regulated to a value around the optimal slip ratio, and the driving torque is very close to the maximum transmissible torque. The control strategy achieves stronger stability, shorter driving distance and hence better control performance.


2013 ◽  
Vol 23 (2) ◽  
pp. 187-203 ◽  
Author(s):  
Basanta Kumar Dash ◽  
Bidyadhar Subudhi

Slip ratio control of a ground vehicle is an important concern for the development of antilock braking system (ABS) to avoid skidding when there is a transition of road surfaces. In the past, the slip ratio models of such vehicles were derived to implement ABS. It is found that the dynamics of the hybrid electric vehicle (HEV) is nonlinear, time varying and uncertain as the tire-road dynamics is a nonlinear function of road adhesion coefficient and wheel slip. Sliding mode control (SMC) is a robust control paradigm which has been extensively used successfully in the development of ABS of a HEV. But the SMC performance is influenced by the choice of sliding surface. This is due to the discontinuous switching of control force arising in the vicinity of the sliding surface that produces chattering. This paper presents a detailed study on the effects of different sliding surfaces on the performances of sliding mode based adaptive slip ratio control applied to a HEV.


Author(s):  
Vladimir Zelichenko ◽  
Irina Bushueva

In this chapter the authors consider the problems of competence approach, the estimation and the control in world E-Learning Systems. The main attention is on the problem of the formation of evaluation competencies. We consider detailed examples showing how, at a certain stage, learning can be assessed in varying levels of competence. Based on a detailed analysis of the educational standard and assessment of proposed methodology, the authors formalize this assessment and express it by a mathematical formula. The problems of estimation and control are proposed to be solved using feedback based on sliding mode by Prof. Vardan Mkrttchian.


1997 ◽  
Vol 27 (5-6) ◽  
pp. 393-408 ◽  
Author(s):  
TAKETOSHI KAWABE ◽  
MASAO NAKAZAWA ◽  
IKURO NOTSU ◽  
YOSHITO WATANABE

Author(s):  
Vladimir V. Vantsevich

One of the technical problems in wheel dynamics is to establish and control the relationship between the tire kinematic and force characteristics related to tire slippage and thus to tire-soil power losses and wheel mobility estimation. This problem has been attracting a lot attention from the research community for decades. The electronization of modern vehicles can enhance their performance in complex and severe vehicle-road/terrain environments by implementing agile control decision within the scale of milliseconds. Thus, agility requires new approaches when considering and analyzing the tire slippage process. This paper presents an analysis of the tire slippage process in stochastic terrain conditions for the purpose of agile tire slip modeling, estimation and control. Based on the introduced relations between the rolling radii of the tire, circumferential wheel force/wheel torque, wheel kinematic parameters and tire slippage, a set of agile tire-terrain characteristics is offered in the paper. The proposed characteristics take in consideration the rate of change of the listed parameters and thus allow a user to estimate the agile dynamics of the tire slip and evidence the closeness to the peak friction coefficient and hence estimate potential mobility loss. The characteristics establish relationships between the stochastic peak friction coefficient, rolling resistance coefficient, and wheel kinematic/force parameters. The characteristics are illustrated by computer simulation results in several terrain conditions.


Sign in / Sign up

Export Citation Format

Share Document